Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Informatin

White-light-emitting lanthanide metal-organic framework for luminescent turn-off sensing of MnO_4^- and turn-on sensing of folic

acid and construction of "turn-on plus" system

Zhen-Peng Dong, Fei Zhao, Zhi-Liang Liu and Yan-Qin Wang*

Table S1. Main Bond lengths (A) and main bond angles () of Eu-MOF-1.					
	Bond lengths (Å)				
Eu1-O2A	2.328(9)	Eu1-O6C	2.379(8)		
Eu1-O8A	2.331(9)	Eu1-O5B	2.388(8)		
Eu1-O1	2.393(9)	Eu1-O7	2.422(9)		
Eu1-O10	2.451(13)	Eu1-O9	2.551(11)		
	Bond an	gles (°)			
O2A-Eu1-O8A	73.0(3)	O2A-Eu1-O6C	147.6(4)		
O8A-Eu1-O6C	137.9(3)	O2A-Eu1-O5B	84.2(3)		
O8A-Eu1-O5B	81.7(3)	O6C-Eu1-O5B	90.7(3)		
O2A-Eu1-O1	121.4(3)	O8A-Eu1-O1	78.2(3)		
O6C-Eu1-O1	81.9(3)	O5B-Eu1-O1	139.9(3)		
O2A-Eu1-O7	80.4(3)	O8A-Eu1-O7	121.7(3)		
O6C-Eu1-O7	86.4(3)	O5B-Eu1-O7	145.9(4)		
O1-Eu1-O7	73.2(3)	O2A-Eu1-O10	76.9(4)		
O8A-Eu1-O10	143.0(4)	O6C-Eu1-O10	70.9(4)		
O5B-Eu1-O10	74.2(4)	O1-Eu1-O10	137.3(4)		
O7-Eu1-O10	72.8(4)	O2A-Eu1-O9	137.0(3)		
O8A-Eu1-O9	69.2(3)	O6C-Eu1-O9	69.2(4)		
O5B-Eu1-O9	70.7(3)	O1-Eu1-O9	69.8(3)		
O7-Eu1-O9	137.9(3)	O10-Eu1-O9	125.4(4)		

Table S1. Main Bond lengths (Å) and main bond angles (⁹) of Eu-MOF-1

Symmetry transformations used to generate equivalent atoms: A: -x+1, -y+1, -z+1; B: -x+2, -y+1,

-z; C: x, y, z+1.

Fig. S1. The solid-state excitation and emission spectra of H_3 DPNC ligand and MOFs 1–3 at room temperature.

Fig. S2. The solid UV-vis absorption spectrum of H₃DPNC ligand.

Number	X	У	1-x-y
1	0.08	0.02	0.90
2	0.07	0.03	0.90
3	0.06	0.04	0.90
4	0.08	0.04	0.88
5	0.07	0.05	0.88
6	0.08	0.07	0.85
7	0.12	0.08	0.80
8	0.11	0.09	0.80
9	0.15	0.10	0.75
10	0.13	0.12	0.75
11	0.20	0.10	0.70
12	0.25	0.15	0.60
13	0.30	0.20	0.50
14	0.40	0.20	0.40
15	0.40	0.30	0.30
16	0.50	0.30	0.20

Table S2. Mixed metal Ln-MOFs $Eu_xTb_yGd_{1-x-y}$ -DPNC with different molar ratios.

Fig. S3. Photographs of mixed metal Ln-MOFs $Eu_xTb_yGd_{1-x-y}$ -DPNC with different molar ratios excited at 365 nm UV lamp.

Fig. S4. PXRD patterns of mixed-Ln-MOFs Eu_xTb_yGd_{1-x-y}-DPNC with different the molar ratio.

MOF	Molar ratio of the reactant Eu/Tb/Gd salt	Eu/Tb/Gd mass ratio	Real Eu/Tb/Gd molar ratio
Eu _{0.06} Tb _{0.04} Gd _{0.9} -DPNC	6:4:90	3.95: 2.52:57.23	5. 68:4.38:90.65

Table S3. The molar ratios analysis of lanthanide ions by ICP for Eu_{0.06}Tb_{0.04}Gd_{0.9}-DPNC.

Fig. S5. FT-IR spectra of ligand and MOFs 1-4.

Fig. S6. PXRD patterns of simulated spectrum and MOFs 1-4.

Fig. S7. (a, b, c) Elemental mapping images (red, green and blue dots represent the Eu, Tb and Gd elements, respectively) and (d) EDX-spectra of $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC. Scale bar = 80 μ m.

Fig. S8. TG curve of $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC (MOF-4).

Fig. S9. The emission spectra of Eu_{0.06}Tb_{0.04}Gd_{0.9}-DPNC (MOF-4) excited at 320 nm.

Fig. S10. The test data of absolute quantum yield of Eu_{0.06}Tb_{0.04}Gd_{0.9}-DPNC excited at 365 nm.

Fig. S11. The Fluorescence lifetime of $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ –DPNC with excitation under 365 nm.

Table S4. Luminescence lifetime and quantum yield (ϕ) of Eu _{0.06} Tb _{0.04} Gd _{0.9} -DPNC.				
MOE	τ			
MOF	544 nm	613 nm	- quantum yield(φ)	
Eu _{0.06} Tb _{0.04} Gd _{0.9} -DPNC	0.95	0.98	18.31%	

Fig. S12. Fluorescence measurements of Eu_{0.06}Tb_{0.04}Gd_{0.9}-DPNC after treatment with different pH aqueous solutions.

Fig. S13. PXRD patterns of $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC after immersing in different pH aqueous solutions for 4 hours

Fig. S14. PXRD patterns of $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC after immersing in different pH aqueous solutions for 3 days.

Fig. S15. Fluorescence response of $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC in different anions aqueous solution.

No.	Luminescence Intensity (I_{544}) of $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC in H_2O	Luminescence Intensity (I_{613}) of $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC in H_2O	I_{616}/I_{544}
1	2927 a.u.	3709 a.u.	1.26717
2	3040 a.u.	3752 a.u.	1.23421
3	2978 a.u.	3756 a.u.	1.26125
4	2989 a.u.	3731 a.u.	1.24824
5	3038 a.u.	3802 a.u.	1.25148
Standard Deviation (σ)			0.01270
Slope (S)			1.93589
Detection Limit (3σ/S)			0.0197

Table S5. Standard deviation and limit of detection calculation for $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC toward MnO₄⁻.

No.	Molecular Formula	$LOD/\mu M$	Ref
1	$[Zn_2(BDC)_{1.5}(L_1)(DMF)]$ 1.5DMF	0.03	[1]
2	In-MOF-Eu	147	[2]
3	[Co(NPDC)(bpee)] DMF 2H ₂ O	1.5	[3]
4	$[Tb(TBOT)(H_2O)](H_2O)_4(DMF)(NMP)_{0.5}$	340	[4]
5	$[Co(L_2)(1,4-ndc) H_2O]_n$	0.014	[5]
б	$[Co_2(L_3)(1,4-chdc)_2]_n$	0.012	[5]
7	[Zn(2,2'-bipy)(ppa)(H ₂ O) ₂] 2H ₂ O	6.73	[6]
8	[Tb(TATAB)(H ₂ O)] 2H ₂ O	0.044	[7]
9	Eu _{0.06} Tb _{0.04} Gd _{0.9} -DPNC	0.0197	This work

Table S6. A summary of the MOFs for the sensing of MnO_4^- .

L_1 =	pyridine 4-carbox	xylic acid,	BDC=	benzene-1,4-dicarb	oxylate;	NPDC	= 2-n	itro
phenyle	nedicarboxylate,	bpee = 1,	2-bis(4-bi	pyridyl) Ethylene;	L_2 =	1,1'-(1,4-	butaned	liyl)
bis(5,6-	dimethylbenzimida	zole), 1,4	-ndc =	1,4-naphtha-leneo	licarboxy	lic acid	l, L ₃	=
1,1'-(1,4	1-butanediyl)bis(2-1	methylbenzi	midazole), $1,4$ -chdc = $1,4$ -cyc	clohexane	dioic acid	l; 2,2'-t	oipy
=	2,2'-bipyridine,	ppa =	3-(pyrio	liium-3-yloxy)phtha	lic acio	d; H ₃ T	ATAB	=
4,4',4"-s-triazine-1,3,5-triyltri-m-amino-benzoic acid.								

Table S7. Standard deviation and limit of detection calculation for $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC toward FA.

to ward 111.		
No.	Luminescence Intensity (I_{462}) of Eu _{0.06} Tb _{0.04} Gd _{0.9} -DPNC in H ₂ O	I /I ₀
1	4668 a.u.	1
2	4717 a.u.	1.01050
3	4798 a.u.	1.02785
4	4654 a.u.	0.99700
5	4664 a.u.	0.99914

Standard Deviation (σ)	 0.012823
Slope (k)	 0.43543
Detection limit (3 σ /k)	 0.0883

Table S8. Sensing performance comparision between other MOF-based sensors for FA.

No.	MOF-based fluorescent materials	Method	Linear range	LOD	Ref
1	nMOFs/Au NCs	Fluorescence	0.15–17.5µmol/L	0.045 µmol/L	[8]
2	AgNPs/MIL-101(Cr)	SERS	0.5 –25 mmol/L	0.3 ±0.02 nmol/L	[9]
3	Eu _{0.06} Tb _{0.04} Gd _{0.9} -DPNC	Fluorescence	0-17.01µmol/L	0.0883 µmol/L	This work

Fig. S16. The emission spectra of "turn-on plus" system in 0-4 minutes after the addition of FA.

Fig. S17. XRD patterns of Eu_{0.06}Tb_{0.04}Gd_{0.9}-DPNC and after treating with different conditions.

Fig. S18. FT-IR patterns of $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ –DPNC before and after soaking in MnO_4^- , FA

and the "turn-on plus" system.

Fig. S19. The UV-vis spectra and excitation and emission of Eu_{0.06}Tb_{0.04}Gd_{0.9}–DPNC and different anionic aqueous solution.

Fig. S20. The ball-and-stick model and the size of FA (18.3 Å \times 7.6 Å \times 5.4 Å), N, blue; C,

gray; O, red; H, white.

Fig. S21. The UV-vis spectra of different biological related substances.

Fig. S22. Fluorescence decay profile of (a) $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC in water, (b) $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC in MnO₄⁻ aqueous solution, (c) $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC in FA aqueous solution, (d) $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC in MnO₄⁻ and FA aqueous solution excited at 365 nm.

No.	Fluorescence lifetime at 544 nm	Fluorescence lifetime at 613 nm
Eu-MOF		2.38 ms
Tb-MOF	1.97 ms	
$Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC	0.95 ms	0.98 ms
$Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC in H ₂ O	1.17767 ms	0.67221 ms
Eu _{0.06} Tb _{0.04} Gd _{0.9} -DPNC in MnO ₄ -	1.20920 ms	0.72989 ms
Eu _{0.06} Tb _{0.04} Gd _{0.9} -DPNC in FA	1.18417 ms	0.70793 ms
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.011346 ms	0.024382 ms

Table S9. The Fluorescence lifetimes at 544 nm and 613 nm of Eu-MOF, Tb-MOF, and $Eu_{0.06}Tb_{0.04}Gd_{0.9}$ -DPNC in various conditions with excitation under 365nm.

Reference

[1] Nasrin Abdollahi, Ali Morsali. Highly sensitive fluorescent metal-organic framework as a selective sensor of Mn^{VII} and Cr^{VI} anions ($MnO_4^{-}/Cr_2O_7^{-2-}/CrO_4^{-2-}$) in aqueous solutions. Analytica Chimica Acta, 2019, 1064, 119-125.

[2] Jing-Xing Wu, Bing Yan. Eu(III)-functionalized In-MOF (In(OH)bpydc) as fluorescent probe for highly selectively sensing organic small molecules and anions especially for CHCl₃ and MnO_4^- Journal of Colloid and Interface Science, 2017, 504, 197–205.

[3] F. Li, Y.-S. Hong, K.-X. Zuo, Q. Sun, E.-Q. Gao. Highly selective fluorescent probe for Hg^{2+} and MnO_4^- by the two-fold interpenetrating metal-organic framework with nitro functionalized linkers. J. Solid State Chem. 2019, 270, 509–515.

[4] M. Chen, W.-M. Xu, J.-Y. Tian, H. Cui, J.-X. Zhang, C.-S. Liu, M. Du. A terbium(III) lanthanide–organic framework as a platform for a recyclable multi-responsive luminescent sensor.
J. Mater. Chem. C, 2017, 5, 2015–2021.

[5] X.-X. Zhao, Z.-B. Qin, Y.-H. Li, G.-H. Cui. Two luminescent cobalt(II) coordination polymers for selective sensing of MnO_4^- in water. Transit. Metal. Chem. 2018, 43, 597 – 604.

[6] K. Wang, M. Zhu, S. Ma, X. Li, M. Zhang, E. Gao. Three water soluble coordination polymers: Synthesis, crystal structure and luminescent sensing for Cr(VI) and MnO_4^- ions in the aqueous phase. Polyhedron, 2019, 166, 60 - 64.

[7] Jun-Hua Wei, Jing-Wei Yi, Min-Le Han, Bo Li, Shan Liu, Ya-Pan Wu, Lu-Fang Ma and Dong-Sheng Li. A Water-Stable Terbium(III)–Organic Framework as a Chemosensor for Inorganic Ions, Nitro-Containing Compounds and Antibiotics in Aqueous Solutions. Chem. Asian J. 2019, 00, 0–0. (10.1002/asia.201900706)

[8] Shuguang Yan, Dongyan Deng, Lichun Zhang, Yi Lv. Fluorescence nano metal organic frameworks modulated by encapsulation for construction of versatile biosensor. Talanta, 2019, 201, 96–103.

[9] Zheng Juan Sun, Zhong Wei Jiang, Yuan Fang Li. Poly(dopamine) assisted in situ fabrication of silver nanoparticles/metal–organic framework hybrids as SERS substrates for folic acid detection. RSC Adv., 2016, 6, 79805–79810.