Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Well-Defined Surface Tungstenocarbyne complex through the Reaction of $[W(\equiv CtBu)(CH_2tBu)_3]$ with CeO_2 : a highly and stable precatalyst for NO_x reduction with NH_3

Cherif Larabi,^a Cuiriong Chen,^a Nicolas Merle,^{a,b} Marc Charlin,^a Kai C. Szeto,^a Aimery de Mallmann,^a Anas Benayad,^c Karima B. Meziane,^b Akim Kaddouri,^d Hai P. Nguyen^{*e} and Mostafa Taoufik^{*a}

Supporting Information

a. Université Lyon 1, Institut de Chimie Lyon, CPE Lyon CNRS, UMR 5128 CP2M, PCM, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne Cedex, France.

b. Université de Lille, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France

c. Université Grenoble Alpes, CEA-LITEN, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.

d. Université Lyon 1 - CNRS, UMR 5256, IRCELYON, 2 Avenue Albert Einstein, F-69626 Villeurbanne, France.

e. Toyota Motor Europe, 1930 Zaventem, Belgium.

Fig S1: Attribution of (CeO-H) Stretching vibration according to literature.^{1,2}

Fig S2: Titration of surface OH of the ceria partially dehydroxylated at 200 °C with Al(iBu)₃ (E_{S1}), DRIFT spectrum of a) CeO₂ dehydroxylated at 200 °C. b) after grafting of Al(iBu)₃ (A). This confirms that all types of the surface OH groups have reacted. Hence the quantification of surface OH groups with Al(iBu)3 gives 0.7 mmol OH/g. ¹H MAS (B) and ¹³C (C), NMR spectra of Al(iBu)₃/CeO₂. The solid state NMR also shows the presence of isobutyl group.

Fig S3: Nitrogen physisorption isotherms and corresponding pore size distribution (inset) of CeO₂₋₂₀₀ (a) and $W(\equiv C^tBu)(CH_2^tBu)_3/CeO_{2-200}$ (b).

Fig S4: Powder X-Ray diffraction of the CeO₂₋₂₀₀ (a) and W(≡CtBu)(CH₂tBu)₃/CeO₂₋₂₀₀ (b). These data fit well with CeO₂ exhibiting a fluorite structure (JCPDS 34-0394).

 Table S1 average particle size of ceria samples calcined at various temperatures, estimated measured using

 Scherrer's equation

Sample	Average crystallite size ^{a)}	Surface area ^{b)}	BET
CeO ₂₋₂₀₀	45 (Å)	173 m².g ⁻¹	205 m².g ⁻¹
W(≡C ^t Bu)(CH ₂ ^t Bu) ₃ /CeO ₂₋₂₀₀	52 (Å)	155 m².g⁻¹	190 m².g ⁻¹

a)The average size of the crystallites was calculated using the following equation (Scherrer's equation):

$$T = \frac{0.9 \times \lambda}{\cos \theta \times \sqrt{H^2 - H^{'2}}}$$
 , where:

T - size of the particles (Å)

λ - X-Ray wavelength (Å).

 θ - Bragg angle.

H - full width at half maximum (FWHM) of the measured line.

H' - full width at half maximum (FWHM) of the instrument's response.

^{b)}The surface area is calculated assuming that the particles have a perfect spherical shape, S = $60000/\rho \times d$ where:

ρ- Specific gravity of ceria (7.215 g.cm⁻³)

d- Particle diameter (A°).

Fig S5: ¹H MAS (left) and ¹³C (right), NMR spectra of W(≡CtBu)(CH₂tBu)₃/CeO₂₋₂₀₀

Fig S6 : XPS spectra of CeO₂₋₂₀₀; Ce3d (a), O1S (c) and W(≡CtBu)(CH₂tBu)₃/CeO₂ catalyst; Ce3d (b), O1S (d), W4f (e). f) Shows the overlap of Ce5S signal of neat ceria and W4f of the catalyst.

Table S2 Surface atom concentration	of different elements	s estimated by	VPS of	CeO ₂₋₂₀₀	and
W(≡CtBu)(CH ₂ tBu) ₃ /CeO ₂ catalyst.					

Samples	Οα/(Οα + Οβ) %	Ce ³⁺ /(Ce ⁴⁺ + Ce ³⁺)%
Ceria (CeO ₂₋₂₀₀)	45	32
W(≡CtBu)(CH ₂ tBu) ₃ /CeO ₂	37	34

Fig S7: CW EPR spectra of $W(=CtBu)(CH_2tBu)_3/CeO_{2-200}$ recorded at room temperature with microwave power of 1.6mW (a) and 0.6mW (b)

Fig S8 : HRTEM (a), STEM (b) and EDX analysis (c) of W(≡CtBu)(CH₂tBu)₃/CeO₂.

Fig S9 : TGA curve of W(≡CtBu)(CH₂tBu)₃/CeO₂ under air (heating rate: 10 °C/min)

Fig S10 : Long terms catalytic stability for NH_3 -SCR test of 1.

Fig S11 : Separate oxidation reaction of NO into NO_2 (a) and NH_3 (b) over 1.

Fig S12 : Recyclability of 2, catalyst prepared by conventional method