Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

A Self-assembled Urchin-like TiO₂@Ag-CuO with Enhanced

Photocatalytic Activity toward Tetracycline Hydrochloride

Degradation

Yin'an Zhu, Ye Pan*, Enming Zhang and Weiji Dai

School of Materials Science and Engineering, Southeast University, Jiangsu Key Laboratory for

Advanced Metallic Materials, Nanjing 211189, China

*Corresponding author. e-mail address: panye@seu.edu.cn (Y. Pan).

Fig.S1 SEM images of the corrosion product (a) $Cu_{60}Ti_{40}$ ribbons and (b) $Cu_{60}Ti_{30}M_{10}$ ribbons

Fig.S2 EDS mapping of TiO₂@CuO, (a) SEM images, (b) Cu, (c) Ti, (d) O

Fig. S3 XRD patterns of the corrosion products of $Cu_{60}Ti_{30}M_{10}$ (M=Ti, Ag) ribbons

Fig.S4 XRD patterns of TiO₂@Ag heterojunction

Fig. S5 SEM images of the TiO_2@Ag-CuO after four cycles

Fig.S6 XRD patterns of fresh and used TiO₂@Ag heterojunction

Photocatalyst	Dosage	TC concentration	Light Source	Degradation	Degradation	Ref.
	(g/L)	(mg/L)		time(min)	rate	
WO ₃ /BiVO ₄ /W-Pt	-	20	350W, Xe lamp	240	78%	1
2D/3D g-C ₃ N ₄	0.5	10	250W, Xe lamp, λ >400 nm	120	69.6%	2
CQDs/Bi ₅ O ₇ I	0.5	20	300W, Xe lamp, λ >400 nm	120	53%	3
Pt/rutile-amorphous TiO ₂	0.5	50	500W, Xe lamp	300	~100%	4
ZnO@NH2-UiO-66	0.25	20	Xe lamp	120	~65%	5
C/BiOCl	0.5	10	300W Xe lamp, full spectrum	90	71.8%	6
γ-Fe ₂ O ₃ /g-C ₃ N ₄	0.5	10	500W, Xe lamp, λ >420 nm	120	73.8%	7
In ₂ S ₃ /NaTaO ₃	0.5	10	300W, Xe lamp	180	~75%	8
Ag QDs/BiOBr	0.5	20	Xenon lamp	120	77.2%	9
TiO ₂ @Ag-CuO	1	30	500W, Xe lamp, λ >420 nm	180	82.86%	This
						work

Table S1. The collected data for different photocatalysts toward Tetracycline Hydrochloride degradation

Fig.S7 (a) The absorbance intensity at a series of tetracycline hydrochloride concentration; (b) enlarged section of 1

References

- 1 L. Xia, J. Bai, J. Li, Q. Zeng, X. Li and B. Zhou, Appl. Catal. B Environ., 2016, 183, 224–230.
- H. Dong, X. Zhang, J. Li, P. Zhou, S. Yu, N. Song, C. Liu, G. Che and C. Li, *Appl. Catal. B Environ.*, 2020, 263, 118270.
- 3 R. Chen, Z. Chen, M. Ji, H. Chen, Y. Liu, J. Xia and H. Li, J. Colloid Interface Sci., 2018, 532, 727–737.
- J. Lyu, Z. Zhou, Y. Wang, J. Li, Q. Li, Y. Zhang, X. Ma, J. Guan and X. Wei, *J. Hazard. Mater.*, 2019, 373, 278–284.
- 5 Q. Du, P. Wu, Y. Sun, J. Zhang and H. He, *Chem. Eng. J.*, DOI:10.1016/j.cej.2020.124614.
- Y. Yan, C. Ma, H. Huang, K. Yu, Y. Liu, C. Li, Z. Zhu, P. Huo, X. Tang, Y. Liu and Z. Lu, *New J. Chem.*, 2020, 44, 79–86.
- C. Li, S. Yu, H. Che, X. Zhang, J. Han, Y. Mao, Y. Wang, C. Liu and H. Dong, *ACS Sustain. Chem. Eng.*, 2018,
 6, 16437–16447.
- 8 J. Xu, B. Luo, W. Gu, Y. Jian, F. Wu, Y. Tang and H. Shen, *New J. Chem.*, 2018, **42**, 5052–5058.
- 9 J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Y. Huang, Z. Chen and H. Li, *Appl. Catal. B Environ.*, 2016, 188, 376–387.