Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

On the relations between backbone thiophene functionalization and charge carrier mobility of A-D-A type of small molecules

Chunlin Xu, Xiaoping Xu and Shaohui Zheng* Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, China Corresponding author: <u>shaohuizheng@swu.edu.cn</u>

Figure S1. Trimer configuration of DCC3T-H based on B3LYP(GD3)/6-31G(d) level of theory.

Figure S2. Optimized structures of probable dimer configurations of the double substituted DCC3T-CH₃ after geometric optimization, with the electronic coupling for electron transfer (V_e) and hole transfer (V_h) and the binding energy.

Figure S3. Dimer configurations of DCCnT-CH₃ (n=1, 2, 3, 4), with the electronic coupling for electron transfer (V_e) and hole transfer (V_h) and the binding energy. G means parallel packing and U means anti-parallel packing. The binding energy of U configurations are larger than G configurations, except for DCC2T-CH₃.

G configurations	substitution	Тор	Side			
DCC3T-CH ₃	single		૰ૡૺૹૢ૽ૢઙૢૻૢ૽૰ૢ ૡૢ ૡૢ૱૱૱ૻૹૹ૱૱ૢ૽ૺ૱ ૰ૡૢ૾ઌ૾ૢઌૢૻૢઌૢૻઌઌઌૻૹઌૡૡ૾ૺૹ૽ૡૢ૾ૡ૾ૢઌ			
	double		منية يعنى مرجود من المرجود من الم وي و فرجود من المرجود م مرجود مرجود من المرجود م			
DCC3T-CHCH ₂	single					
	double		می و ۵ بر فرد دو فر می و مقر می می می و می و می مقوم می و مقر می می و می و می و می و می و مقر می و مقر می و می و می و می و می و می و مقر می و می و می و می و می و می و می و می و			
DCC3T-OCH ₃	single	•	ေဆိုခရိန္က မခ်ာ့မ <u>ဆံ</u> ုးမ ခုနှစ္ စာဒိုခုနှာ မရိ စမန္ဒ စာ ခုန္တ စာ ^အ ခို ရ စ			
	double		؞؞ڹؙۑڗؙؿ؞ۼؖؠۜڕڮؿۼۣؿ؞ۑڕڰۑ؞ڟؖٷؿؿۼ؞ ؞؞ڹۣؾڗۣؿؿ؞ڰ؞ۼۼۣۑڎ؞ڔۑ ؞؞ڹؾڗۣؿؿ؞ڰ؞ۼۼۣۑڎ؞ _ڮ ڹ			
DCC3T-OH	single					
	double		૦ ગંગ્રુએન સુરાહ અગ્ર નુ ^{રા} ગુસ્ટ્રોએન ૦ ૨ ગુસ્ટ્રેસ્ટ્રેસ્ટ અગ્ર ગુરુ નુરસ્ટ અગ્ર ગુસ્ટ્રેસ્ટ			
DCC3T-NH ₂	single		ດຊື່ອງຊີ່ຊູງເອນນາ ⁵⁴ ອາຍາດ ເອົາອີງ ອ້າງຊີ່ຊີ່ງຊີ່ງເອນນາ ⁵⁴ ອາຍາດ ເອົາອີງອີງ ອ້າງຊີ່ງຊີ່ງອີງອີງອີງອີງອີງອີງອີງອີງອີງອີງອີງ			
	double					

Figure S4. The optimized parallel (G) dimer configurations of DCC3T-X (X = H, CHCH₂, OCH₃, OH, NH₂) based on B3LYP(GD3)/6-31G(d) theory level.

U configurations	substitution	Тор	Side			
DCC3T-CH ₃	single					
	double		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
DCC3T-CHCH ₂	single		^ૡ ૡૢ૾૱ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ			
	double					
DCC3T-OCH ₃	single		ေရိုးရဲ႕ကာကေရာက ရွှောက္ကဆုံးရဲ႕ ေရိုးရဲ့မ်ိဳး ^{သည်။} သန္တာ အပ္စံအပြီးနဲ့ ၂၀ ေရိုးရဲ့မ်ိဳး ^{သည်။} သန္တာ အပ္စံအပြီးနဲ့ ၂၀			
	double		؞؞ڹؙۑؿؙؿ؞ۼؖؠٷؽۼۑۑۄڡۑٷ [ؖ] ؞؞ڹۣۑڗۣڹؿ؞ۿؿۼڸۣ؞ۼۑ ؞؞ڹۣۑڗۣڹؿ؞ۿؿۼڸۣ؞ۼۑ			
DCC3T-OH	single		૾૾ૢૡ૽ૻૹ૽ૻૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૡઌૹ૱ૺૺૡૢૻૹ૱ૢૡૺૼૡૢૻૡ ૾૾ૡૢૡૢૺૡ ૾ૡૢૡૢૺઌ			
	double		مانون و مست من مور و منطق اسم موجود من من موجود من			
DCC3T-NH ₂	single		૾ૢૡૢૻૺૢૼૼ૱ૢ૱ૡૢ૱૾ૢૡૺ૱૱૱૱ૢૡૺૼૢૢૡૻ ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ			
	double	الم				

Figure S5. The optimized parallel (G) dimer configurations of DCC3T-X (X= H, CHCH2, OCH3, OH, NH2) based on B3LYP(GD3)/6-31G(d) theory level.

Figure S6. HOMO and LUMO orbitals of DCC3T-H with the contributions (listed percentage) of functionalized groups based on CAM-B3LYP/6-31G(d) level of theory. Isosurface=0.05.

Figure S7. The CDD maps of the first singlet excited state of DCC3T-H based on TDDFT/CAM-B3LYP/6-31G(d) .Isosurface=0.001, $H \rightarrow L$: percentage of the HOMO \rightarrow LUMO transition; *E*-*E*₀: excitation energy; q_{CT} : the amount of transferred charge in unit of elementary charge. Color of codes: red-electron; blue-hole.

Figure S8. HOMO and LUMO orbitals of single substituted DCC3T-C₆H₁₃ with the contributions (listed percentage) of functionalized groups based on CAM-B3LYP/6-31G(d) level of theory (Isosurface=0.05). The dihedral angles of neutral (α_0 , β_0) and charged ($\alpha \pm$, $\beta \pm$) states and the inner reorganization energy of electron transfer (λ_e) and hole transfer (λ_h) based on B3LYP/6-31G(d) level of theory are also listed.

Figure S9. The CDD maps of the first singlet excited state based on TDDFT/CAM-B3LYP/6-31G(d). Isosurface=0.001, $H \rightarrow L$: percentage of the HOMO \rightarrow LUMO transition; *E*-*E*₀: excitation energy; q_{CT} : the amount of transferred charge in unit of elementary charge. Color of codes: red-electron; blue-hole.

The results of geometry, FMOs and the first excited state of DCC3T- C_6H_{13} are close to those of DCC3T-CH₃, indicating the long alkyl sidechain does little effect on the properties of monomer.

Figure S10. FMOs DCC3T-X dimers based on CAM-B3LYP/6-31G(d) theory level, with the calculated overlap integral (S_{if}) and electronic coupling ($V_{e,h}$). For clarity, the Isosurface value is set to 0.03. a: double substituted DCC3T-OCH₃; b: DCC3T-H; c: double substituted DCC3T-OH(U); d: single substituted DCC3T-NH₂; e: single substituted DCC3T-CH₃.

For single substituted DCC3T-NH₂, the FMOs are delocalized on single molecule, besides, the HOMO(LUMO+1) and HOMO-1(LUMO) are distributed on opposite sides, thus, the orbital overlap and electronic coupling are extremely small. For the

double substituted DCC3T-OCH₃(U), the FMOs are separated on two molecules with high symmetry, thus, the orbital overlap and electronic coupling are extremely large.

Figure S11. The optimized dimer structure of the single substituted DCC3T-C₆H₁₃, based on B3LYP(GD3)/6-31G(d) theory level. The geometry center distance (r) and binding energy ($E_{binding}$) are also listed. The results suggest U configuration is much stabler than G configuration in terms of binding energy, and the π - π stacking of U configuration is much stronger than G configuration due to smaller distance and better fitted molecular packing.

Table S1. Charge transfer distance (r, in Å), absolute value of electronic coupling ($|V_{e,h}|_{in meV}$), charge transfer rate constant ($k_{e,h}$, in s⁻¹), inner reorganization energy (in eV) of electron transfer (λ_e) and hole transfer (λ_h), and charge carrier mobility (

			Electron transport					Hole transport				
Molecule		r	$ V_e $	λ_e	k _e	μ_e		$ V_h $	λ_h	k _h	μ_h	
DCC3T-C ₆ H ₁₃ (U)	single	3.944	14.83	0.31	3.43×10 ¹¹	2.20×10-2	2	6.64	0.18	5.03×10 ¹²	3.23×10 ⁻¹	
DCC3T-C ₆ H ₁₃ (G)	single	5.743	11.52	0.31	2.07×10^{11}	1.33×10 ⁻²	1	5.52	0.18	1.71×10^{12}	1.10×10 ⁻¹	
DCC3T-CH ₃ (U)	single	3.638	43.15	0.32	2.58×10^{12}	6.62×10 ⁻²		1.41	0.19	1.28×10^{10}	3.29×10 ⁻⁴	
DCC3T-CH ₃ (G)	single	4.713	35.22	0.32	1.72×10^{12}	7.44×10 ⁻²		2.44	0.19	3.82×10 ¹⁰	1.65×10-3	

 $\mu_{e,h}$, in cm²V⁻¹s⁻¹) of dimers of the single substituted DCC3T-C₆H₁₃ and DCC3T-CH₃.

The electron mobility of DCC3T-C₆H₁₃ are slightly smaller than DCC3T-CH₃, while the hole mobility of DCC3T-C₆H₁₃ are about one hundred times of DCC3T-CH₃. The

differences between DCC3T-CH₃ and DCC3T-C₆H₁₃ can mainly attribute to the molecular packing. In DCC3T-CH₃ dimer, the π - π stacking between the A-D-A backbones of two molecules are much weaker than DCC3T-C₆H₁₃, as shown in Figure S3-4 and Figure S10. The results indicate the presence of alkyl side chain does good to the molecular packing and charge mobility.