Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information:

New Journal of Chemistry

One-pot synthesis of 1-butylpyrrolidine and its derivatives from aqueous ammonia and 1,4-butandiol over CuNiPd/ZSM-5 catalyst

Yan Long^{a,b}, Shimin Liu^{a,*}, Xiangyuan Ma^a, Liujin Lu^a, Yude He^a, Youquan Deng^{a,*}

Catalyst characterization:

The metal contents were analyzed by using graphite furnace atomic absorption spectroscopy (GF-AAS, contrAA700, Germany).

X-ray diffraction (XRD) was measured on a Siemens D/max-RB powder X-ray diffractometer. Diffraction patterns were recorded with Cu K α radiation (40 mA, 40 kV) over a 2 θ range of 5° to 90° and a position-sensitive detector using a step size of 0.01° and a step time of 0.15 s.

Surface analysis of the catalysts was performed by X-ray photoelectron spectroscopy (XPS) on a VG ESCALAB210 spectrometer using Mg K α radiation at a pass energy of 20 eV.The energy scale was calibrated and corrected for charging using the C 1s (285.0 eV) line as the binding energy (BE) reference.

Transmission electron microscope (TEM) analysis was carried out using a TF20 field emission transmission electron microscope operating at 300 kV. Single-particle EDX mapping analysis was performed using a TF20 field emission TEM in the STEM mode.

General procedures for the preparation of 3Cu-3Ni-0.2Pd/ZSM-5:

The 3%Cu-3%Ni-0.2Pd/ZSM-5 catalyst was prepared by incipient wetness method using Cu(NO₃)₂·3H₂O, Ni(NO₃)·6H₂O and H₂PdCl₄ (Sinopharm Chemical Reagent Co., Ltd, China) aqueous solution ([Pd] 0.1g/mL) as starting materials. 1.14g Cu(NO₃)₂·3H₂O (0.3g Cu) and 1.5g Ni(NO₃)·6H₂O (0.3g Ni) dissolved in 3mL water, then 0.2ml H₂PdCl₄ aqueous solution was added, 10g HZSM-5 zeolite (Si/Al ratio of 80, surface area of 360 m²/g, supplied by the catalyst plant of NanKai University, China) with continuous stirring at room temperature. After 2h stirring and 2h aging, the resulted precipitate was dried at 110 °C for 12h. Then, the precursors were calcined at 500 °C for 3h in air. Then, the obtained catalyst precursor was reduced at 300 °C under hydrogen atmosphere for 3h. The catalyst was denoted as 3Cu-3Ni-0.2Pd/ZSM-5. Other catalysts were prepared via similar method, and the carrier USY (Si/Al ratio of 5.4, surface area of 700 m²/g) Beta (Si/Al ratio of 40, surface area of 680 m²/g), HZSM-5 (Si/Al ratio of 25, surface area of 340 m²/g) and HZSM-5 (Si/Al ratio of 300, surface area of 370 m²/g) zeolites were also purchased from the catalyst plant of NanKai University, China.

Synthesis of 1-BP:

The catalytic reactions were carried out in a 100 ml stainless steel autoclave with a magnetic stirrer. In a typical process, BDO 18g (0.2 mol), aqueous NH₃ 6.8g (0.1 mol, 25 wt% solution) and catalyst (1.8 g) were charged in the autoclave, which was then filled with H₂ at 4 MPa pressure. The reactor was heated to 300 °C and magnetically stirred constantly during the reaction, and the final pressure was 10 Mpa. After reaction, the qualitative and quantitative analyses of the resulting liquid mixture were conducted with GC-MS (Agilent 6890/5973) and GC (Agilent 7890) equipped with a SE-54 capillary column and a FID detector. The GC-MS chromatogram of the products under optimization conditions, the scan and standard mass spectra of 1-butylpyrrolidine were illustrated in Fig. S1.

Entry	Route	Catalyst	Yield	Ref.
$1^{a,b}$		Silica gel supported H ₂ SO ₄	90% ^d	1
2^{a}	N +OH	RuCl ₃	80% ^d	2
3 ^{a,b}	N + NaOH NAOH NAOH	-	62% ^d	3
4 ^b	CI CI + NH ₂ - NH ₂ + 2HCI	Hydrotalcite	82% ^e	4
5 ^a	HO	RhH(PPh ₃) ₄	56% ^d	5
6	H0 OH + NH2 220°C	RuCl ₃	36% ^d	2
7 ^c	HO \rightarrow $H_3 \xrightarrow{H_2}$ $N \rightarrow$	Reduced, fused iron	38% ^e	6
8	HO HO + NH ₃ H_2 N	CuNiPd/ZSM-5	76% ^e	This work

Table S1 The comparison of different routes for synthesis of 1-BP

^a Involving relatively expensive raw materials

^bUsing relatively toxic reactants or yielding waste acid (or salt)

^c1-BP just is one of the products, and not the target product

^d Isolated yield

^e GC yield

Table S2 The contents of Cu, Ni and Pd measured by AAS

aatalvat	Content wt%		
catalyst	Cu	Ni	Pd
3Cu-3Ni/ZSM-5	2.91	2.88	
3Cu-3Ni-0.2Pd/ZSM-5	2.92	2.86	0.19
3Cu-3Ni-0.2Pd/ZSM-5*	1.76	2.68	0.18

* 2nd run

Table S3 XPS peak table of 3%Cu-3%Ni-0.2/ZSM-5

-					
Name	Start BE	Peak BE	End BE	Atomic %	
C1s	298.88	284.78	280.08	93.16	
Cu2p	970.88	932.83	926.08	3.38	
Ni2p	890.88	855.76	846.08	3.19	
Pd3d	352.08	336.15	330.28	0.26	
					1

Time

Fig. S1 (a) GC-MS chromatogram of the products under optimization conditions, (b) scan mass spectrum of 1-butylpyrrolidine, (c) standard mass spectrum of 1-butylpyrrolidine

Fig. S2 the EDX pattern of 3Cu-3Ni-0.2Pd/ZSM-5

References

- 1. H. Alinezhad, M. Tajbakhsh and M. Zare, Synth. Commun., 2009, 39, 2907-2916.
- 2. G. Bitsi, E. Schleiffer, F. Antoni and G. Jenner, J. Organomet. Chem., 1989, 373, 343-352.
- 3. X. Li, Z.Zeng, S. Garg, B. Twamley, J. M. Shreeve, Eur. J. Inorg. Chem. 2008, 3353-3358.
- 4. M. Dixit, M. Mishra, P. A. Joshi and D. O. Shah, Bull. Korean Chem. Soc., 2012, 33,

1457-1464.

- 5. R. Grigg, T. R. B. Mitchell, S. Sutthivaiyakit, N. Tongpenyai, J.C.S. Chem. Comm., 1981, 12, 611-612.
- 6. G. Kliger, O. Lesik, E. Marchevskaya, A. Mikaya, V. Zaikin, L. Glebov and S. Loktev, Chem. Heterocycl. Compd.(Engl. Transl.);(United States), 1987, **23**, 161-164.