Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Synthesis of biphenyl through the C-H bond activation in benzene over

a Pd catalyst supported on graphene oxide

Deepika Sharma^a, Lyubov G. Bulusheva^{b,c}, Dmitri A. Bulushev^d and Neeraj Gupta^{a,e*}

^a School of Chemistry, Faculty of Sciences, Shoolini University, Solan (H.P.) India -173229, E-Mail: neeraj.gupta@shooliniuniversity.com

^b Nikolaev Institute of Inorganic Chemistry, Novosibirsk 630090, Russia

^c Novosibirsk State University, Novosibirsk 630090, Russia

^d Boreskov Institute of Catalysis, Novosibirsk 630090, Russia

^e Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala (H.P.) India – 176206 E-mail: gupta nrj@yahoo.co.in

1. Experimental

1.1 Chemicals and Materials:

All solvents and reagents used in the present study were of analytical grade and used as received. Palladium nitrate ($Pd(NO_3)_2 \bullet 2H_2O$), hydrochloric acid (HCl), acetic acid (CH_3COOH), benzene (C_6H_6), acetone (C_3H_6O), anisole (C_7H_8O), toluene (C_7H_8) and nitrobenzene ($C_6H_5NO_2$) were purchased from LobaChemie private limited and graphene oxide was purchased from Platonic Nanotech Private Limited (Mahagama, Godda, Jharkhand, India). Melting points of all the products reported in Table 2 in the manuscript are compared with the data available on these sites.

- a) <u>https://pubchem.ncbi.nlm.nih.gov/compound/4_4_-Dimethoxybiphenyl</u>
- b) <u>https://www.sigmaaldrich.com/catalog/product/aldrich/d151203?lang=en®ion=US</u>
- c) <u>https://pubchem.ncbi.nlm.nih.gov/compound/4_4_-Dinitrobiphenyl</u>

1.2 Characterization techniques

The HRTEM analysis was accomplished in FEI Tecnai G2 F30 microscope in which an electron beam is generated from the field emission gun, operated at 300 KeV. X-ray photoelectron spectroscopy (XPS) data were collected using a Thermo Fisher Scientific NEXSA spectrometer. X- ray powder diffraction (XRD) a characterization technique was performed using a Rigaku D/max 2200V/PC diffractometer. FTIRS analysis was performed by using a Fourier Transform Infrared spectrometer (Agilent Technologies). in the scale of 800-4000 cm⁻¹. The samples were diluted with KBr. An Inductivity Coupled Plasma Mass Spectrometry (ICP-MS) study of the catalyst was performed by using an ELAN DRC-e spectrometer (Perkin Elmer). Thermo-gravimetric analysis/differential scanning calorimetry (TGA/DSC) was performed on a Perkin Elmer, Netzsch Geratebau GmbH apparatus under the nitrogen atmosphere within the temperature range 25-100°C at a heating rate of 3°C/min. Weight loss percent was calculated by using this formula [$Weight loss \% = \frac{y1 - y2}{x^2 - x1} \times 100$]. A ¹H-NMR spectrum was recorded on a JNM ECX-500 spectrometer.

The product was measured in $CDCl_3$ at 500 MHz.

2. Tables

Sr.	Catalyst	т	Time of	Yield (%)	References
No.		(°C)	reaction (h)		
1.	Pd(II)@GO	80	12	78	This work
2.	Pd(OAc)₂molybdova	90	15	14.3	[1]
	nado-phosphate				
3.	Pd-slGO-60, K ₂ CO ₃ ,	90	2	66	[2]
	EtOH				
4.	Pd/C, HCOONa,	55-	0.58	71	[3]
	NaOH, TBAB, H ₂ O,	75			
	MeOH				
5.	Pd(OAc) ₂ /Cu(OTf) ₂ ,	80	17	8.0	[4]
	2-fluoropyridine,				
	CF_3CO_2H , AcOH				
6.	Pd catalyst,	120	16	83	[5]
	K ₂ CO ₃ ,PivOH,				
	PhH/DMA				
7.	PdCl ₂ , AgNO ₃	80	20	40	[6]
8.	Pd ^{II} @PDMS	90	24	26	[7]

Table-S1. Comparison of the present work with literature

3. Figures

Figure S1. XPS survey spectra of GO and Pd(II)GO.

Figure S2. N 1s XPS spectrum extracted from the survey spectrum of Pd(II)@GO

Figure S3. ¹H-NMR spectrum of the obtained biphenyl product.

References for Table-S1:

- 1. T. Yokota, S. Sakaguchi, Y. Ishii. *Adv. Synth. Catal.* 2002, **344**, 849-854.
- 2. S. I. Yamamoto, H. Kinoshita, H. Hashimoto, Y. Nishina. *Nanoscale*. 2014, **6**, 6501-6505.
- 3. S. Mukhopadhyay, S. Ratner, A. Spernat, N. Qafisheh, Y. Sasson. *Org. Process Res. Dev.* 2002, **6**, 297-300.
- 4. Y. Izawa, S. S. Stahl. Adv. Synth. Catal. 2010, 352, 3223-3229.
- 5. J. Kim, S. H. Hong. ACS Catal. 2017, 7, 3336-3343.
- 6. Y.Fujiwara, I.Moritani, K. Ikegami, R. Tanaka, S.Teranishi. *Bull. Chem. Soc. Jpn.,* 1970, **43**, 863-867.
- 7. Y. Liu, Y. Zhou, J. Li, Q. Wang, Q. Qin, W. Zhang, H. Asakura, N. Yan, J. Wang. *Appl. Catal. B: Environ.* 2017, **209**, 679-688.