Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Synthesis of Pregabalin and its novel lipophilic β -alkylsubstituted analogues from fatty chains

Caroline Da Ros Montes D'Oca,^{*,a,b} Renata Fontes Ongaratto,^c Eduardo Bustos Mass,^b Arthur Motta de Andrade,^c Marcelo G. Montes D'Oca^{a,c} and Dennis Russowsky^b

^aDepartamento de Química, Universidade Federal do Paraná, Centro Politécnico, Av. Coronel Francisco H. Santos 100, Curitiba-PR, Brazil. ^bInstituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre-RS, Brazil ^cEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália Km 08 s/n, Rio Grande-RS. Brazil.

Contents

1. Selected ¹H, ¹³C NMR and IR spectrum......Figures S1-80

^{*} Corresponding author: Departamento de Química, Universidade Federal do Paraná, Centro Politécnico – Jardim das Américas, Av. Coronel Francisco H. Santos 100, Caixa Postal 19061, CEP 81.531-980, Curitiba, Paraná, Brazil. Fone: +55 41 3361-3396. E-mail address: <u>carolinedoca@ufpr.br</u> (CRM D'Oca).

Figure S1. Spectrum of ¹H NMR (300 MHz, CDCl₃) of linoleic alcohol.

Figure S2. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of linoleic alcohol.

Figure S3. Spectrum of ¹H NMR (300 MHz, CDCl₃) of aldehyde 6f.

Figure S4. Spectrum of ¹H NMR (300 MHz, CDCl₃) of aldehyde 6g.

Figure S5. Spectrum of ¹H NMR (300 MHz, CDCl₃) of aldehyde 6h.

Figure S6. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of aldehyde 6h.

Figure S7. Spectrum of ¹H NMR (300 MHz, CDCl₃) of aldehyde 6i.

Figure S8. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of aldehyde 6i.

Figure S9. Spectrum of ¹H NMR (300 MHz, CDCl₃) of alkylidene 9a.

Figure S10. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of alkylidene 9a.

Figure S11. Spectrum of ¹H NMR (300 MHz, CDCl₃) of alkylidene 9b.

Figure S12. Spectrum of ¹H NMR (300 MHz, CDCl₃) of alkylidene 9c.

Figure S13. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of alkylidene 9c.

Figure S14. Spectrum of ¹H NMR (300 MHz, CDCl₃) of alkylidene 9d.

Figure S15. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of alkylidene 9d.

Figure S16. Spectrum of ¹H NMR (300 MHz, CDCl₃) of alkylidene 9e.

Figure S17. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of alkylidene 9e.

Figure S18. Spectrum of ¹H NMR (300 MHz, CDCl₃) of alkylidene 9f.

Figure S19. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of alkylidene 9f.

Figure S20. Spectrum of ¹H NMR (300 MHz, CDCl₃) of alkylidene 9g.

Figure S21. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of alkylidene 9g.

Figure S22. Spectrum of ¹H NMR (300 MHz, CDCl₃) of alkylidene 9h.

Figure S23. Spectrum of ¹H NMR (300 MHz, CDCl₃) of alkylidene 9i.

Figure S24. Spectrum of ¹H NMR (300 MHz, CDCl₃) of crude nitro adduct 10a.

Figure S25. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of crude nitro adduct 10a.

Figure S26. Spectrum of ¹H NMR (300 MHz, CDCl₃) of crude nitro adduct 10b.

Figure S27. Spectrum of ¹H NMR (300 MHz, CDCl₃) of crude nitro adduct 10c.

Figure S28. Spectrum of ¹H NMR (300 MHz, CDCl₃) of crude nitro adduct 10d.

.

Figure S29. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of crude nitro adduct 10d.

Figure S30. Spectrum of ¹H NMR (300 MHz, CDCl₃) of crude nitro adduct 10e.

Figure S31. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of crude nitro adduct 10e.

Figure S32. Spectrum of ¹H NMR (300 MHz, CDCl₃) of crude nitro adduct 10f.

Figure S33. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of crude nitro adduct 10f.

Figure S34. Spectrum of ¹H NMR (300 MHz, CDCl₃) of crude nitro adduct 10g.

Figure S35. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of crude nitro adduct 10g.

Figure S36. Spectrum of ¹H NMR (300 MHz, CDCl₃) of crude nitro adduct 10h.

Figure S37. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of crude nitro adduct 10h.

Figure S38. Spectrum of ¹H NMR (300 MHz, CDCl₃) of crude nitro adduct 10i.

Figure S39. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of crude nitro adduct 10i.

Figure S40. Spectrum of ¹H NMR (300 MHz, CDCl₃) of γ -nitro acid 11a.

Figure S41. Spectrum of 13 C NMR (75 MHz, CDCl₃) of γ -nitro acid 11a.

Figure S42. Spectrum of IR (NaCl) of γ-nitro acid 11a.

Figure S43. Spectrum of ¹H NMR (300 MHz, CDCl₃) of γ -nitro acid 11b.

Figure S44. Spectrum of 13 C NMR (75 MHz, CDCl₃) of γ -nitro acid 11b.

Figure S45. Spectrum of IR (NaCl) of γ-nitro acid 11b.

Figure S46. Spectrum of ¹H NMR (300 MHz, CDCl₃) of γ -nitro acid 11c.

Figure S47. Spectrum of 13 C NMR (75 MHz, CDCl₃) of γ -nitro acid 11c.

Figure S48. Spectrum of IR (NaCl) of γ -nitro acid 11c.

Figure S49. Spectrum of ¹H NMR (300 MHz, CDCl₃) of γ -nitro acid 11d.

Figure S50. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of γ -nitro acid 11d.

Figure S51. Spectrum of IR (NaCl) of γ-nitro acid 11d.

Figure S52. Spectrum of ¹H NMR (300 MHz, CDCl₃) of γ -nitro acid 11e.

Figure S53. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of γ-nitro acid 11e.

Figure S54. Spectrum of IR (NaCl) of γ -nitro acid 11e.

Figure S55. Spectrum of ¹H NMR (300 MHz, CDCl₃) of γ-nitro acid 11f.

Figure S56. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of γ -nitro acid 11f.

Figure S57. Spectrum of IR (NaCl) of γ-nitro acid 11f.

Figure S58. Spectrum of ¹H NMR (300 MHz, CDCl₃) of γ -nitro acid 11g.

Figure S59. Spectrum of 13 C NMR (75 MHz, CDCl₃) of γ -nitro acid 11g.

Figure S60. Spectrum of IR (NaCl) of γ-nitro acid 11g.

Figure S61. Spectrum of ¹H NMR (300 MHz, CDCl₃) of γ -nitro acid 11h.

Figure S62. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of γ -nitro acid 11h.

Figure S63. Spectrum of ¹H NMR (300 MHz, CDCl₃) of γ -nitro acid 11i.

Figure S64. Spectrum of ¹³C NMR (75 MHz, CDCl₃) of γ -nitro acid 11i.

Figure S65. Spectrum of ¹H NMR (300 MHz, D₂O, capillary CDCl₃) of Pregabalin 2a.

Figure S66. Spectrum of ¹³C NMR (75 MHz, D₂O, capillary CDCl₃) of Pregabalin 2a.

Figure S67. Spectrum of ¹H NMR (300 MHz, MeOH- d_4) of γ -amino acid **2b**.

Figure S68. Spectrum of ¹³C NMR (300 MHz, MeOH- d_4) of γ -amino acid 2b.

Figure S70. Spectrum of ¹H NMR (300 MHz, MeOH- d_4) of γ -amino acid **2c**.

Figure S71. Spectrum of ¹³C NMR (75 MHz, MeOH- d_4) of γ -amino acid **2c**.

Figure S72. Spectrum of IR (KBr) of γ -nitro acid 2c.

Figure S73. Spectrum of ¹H NMR (300 MHz, MeOH- d_4) of γ -amino acid **2d**.

Figure S74. Spectrum of ¹³C NMR (75 MHz, MeOH- d_4) of γ -amino acid **2d**.

Figure S75. Spectrum of IR (KBr) of γ-nitro acid 2d.

Figure S76. Spectrum of ¹H NMR (300 MHz, MeOH- d_4) of γ -amino acid **2e**.

Figure S77. Spectrum of ¹³C NMR (75 MHz, MeOH- d_4) of γ -amino acid 2e.

Figure S78. Spectrum of IR (KBr) of γ -nitro acid 2e.

Figure S79. Spectrum of ¹H NMR (300 MHz, DMSO- d_6) of γ -amino acid 2g.

Figure S80. Spectrum of ¹³C NMR (75 MHz, DMSO- d_6) of γ -amino acid 2g.