
Supporting Information

Exploratory studies of a multidimensionally talented Simple Mn^{II}-based porous network : Selective "turn-on" recognition @ Cysteine over homocysteine with an indication of cystinuria and renal dysfunction

Sourav Bejab, Abhijit Hazraab, Riyanka Dasab, Sourav Kr. Sahaac, Monserrat Corbellad and Priyabrata Banerjeeab*

- a. Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India.
- $E-mail: pr_banerjee@cmeri.res.in, priyabrata_banerjee@yahoo.co.in; Web: www.cmeri.res.in, www.priyabratabanerjee.in; Tel: +91-9433814081$
- b. Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- c. Present address: Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- d. Department of Inorganic Chemistry, University of Barcelona, Barcelona, Spain.

SI. No.	Description	Entry
1	Propagation of PCP-1 along <i>a, b, c</i> -axes	Fig. S1
2	Powder XRD (PXRD) studies of PCP-1	Fig. S2
3	Thermo Gravimetric Analysis	Fig. S3
4	FESEM images of MOF, PCP-1	Fig. S4
5	HRTEM images along with element map of PCP-1	Fig. S5 & Fig. S6
6	Absorption spectra of PCP-1, PCP-1+Cys & PCP-1+Hcy	Fig. S7
7	EDX mapping images of the Oxygen, Sulphur, Nitrogen, Manganese, Carbon atoms of PCP-1 & FTIR spectra of PCP-1 after interacting with Biothiols	Fig. S8
8	FESEM images of the PCP-1 before & after interaction with biothiols	Fig. S9
9	LOD calculations for Cysteine & Homocysteine	Fig. S10
10	B-H plot for determining association constant	Fig. S11
11	Chemical diagram of biothiols	Fig. S12
12	Time-correlated single photon counting	Fig. S13
13	UV-Vis spectrum of fluorophoric unit of PCP-1 obtained from TD-DFT	Table S1 & Fig. S14

Fig. S1 The propagation of the 3D network of **PCP-1** along the view point of (a) a-, (b) b- and (c) c-axis.

PXRD

The powder X-ray diffraction (PXRD) patterns were measured using a Bruker AXS (D8)PXRD instrument. The crystallinity of the **PCP-1** was confirmed by low angle (in the range of 5 to 50 2θ value with the scan rate 0.5) PXRD analysis. PXRD patterns of the MOF, **PCP-1** matches well with the simulated PXRD pattern of **PCP-1**, indicating that the topology is retained and thus all members are isostructural.

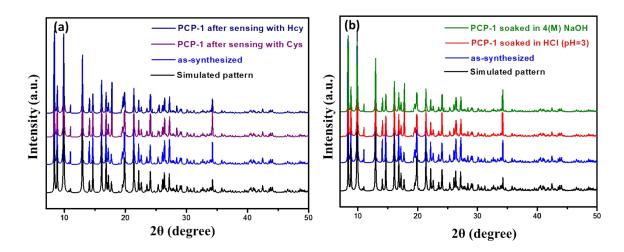
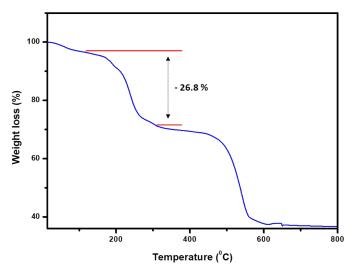
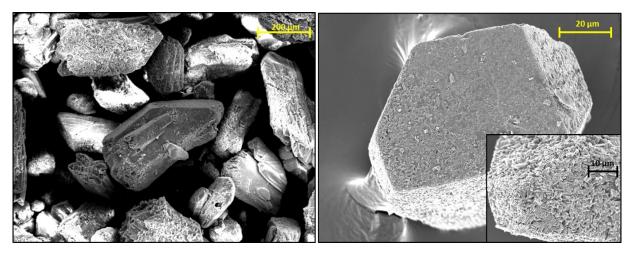
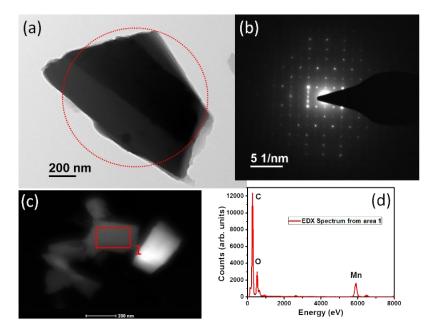



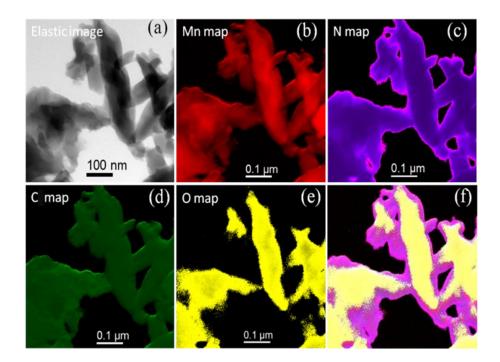
Fig. S2 (a) Experimental and simulated PXRD patterns of the as-synthesised MOF (PCP-1) along with its stability after sensing of biothiols (b) Stability of the PCP-1 in different harsh conditions

Thermogravimetric analysis and framework rigidity

To characterize the thermal stability and thermal behaviour of **PCP-1**, Thermogravimetric Analysis (TGA) was carried out. TGA was conducted in nitrogen atmosphere from 0° C to 800° C with a heating rate of 5° C/min. The results obtained from TGA analysis was depicted in **Figure S3**. It was observed that a mass loss of ~ 26.8 % till ~275 $^{\circ}$ C corresponding to the loss of the encapsulated guest solvent molecules, DMF (calcd. 26.58%). Thus, the desolvated MOF is quite stable upto ~275 $^{\circ}$ C. Beyond this, the MOF shows gradual decomposition.

Fig. S3 TGA curve of MOF, **PCP-1** in nitrogen gas medium with a heating rate of 5°C/min.


Fig. S4 FESEM images of MOF, PCP-1 prepared by conventional solvothermal method.

HRTEM analysis:

High resolution transmission electron microscopy (HRTEM) (FEI, TF30, ST) was operated at 300 kV. The TF30 microscope was equipped with high-angle annular dark field (HAADF) detector (Fischione, model: 3000) and a scanning unit. Energy-filtered TEM (EFTEM) studies were accomplished using a post column imaging filter (Quantum SE, Model 963) from Gatan Inc.

Fig. S5 (a) TEM image of MOF, **PCP-1**, (b) Electron diffraction pattern of the analysed porous material (c) STEM-HAADF image and (d) EDX spectrum taken from the region marked by 1

Fig. S6 EFTEM images of **PCP-1**. (a) elastic (zero-loss) image, (b) chemical map of Mn (red), (c) chemical map of N (blue), (d) chemical map of C (green), (e) chemical map of O (yellow) and (f) composite map.

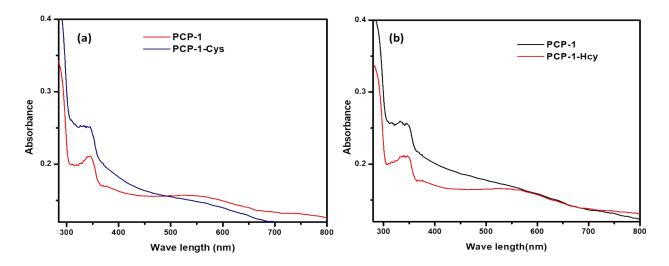
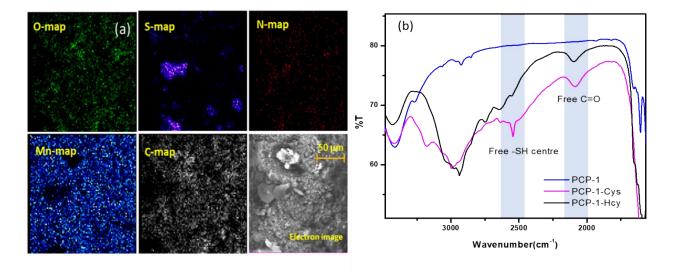



Fig. S7 (a) Absorption spectra of PCP-1 & PCP-1+Cys (b) Absorption spectra of PCP-1 & PCP-1+Hcy

Fig. S8 (a) EDX mapping images of the Oxygen, Sulphur, Nitrogen, Manganese, Carbon atoms of **PCP-1** after interaction with biothiol (b) FTIR spectra of **PCP-1** after interacting with Biothiols

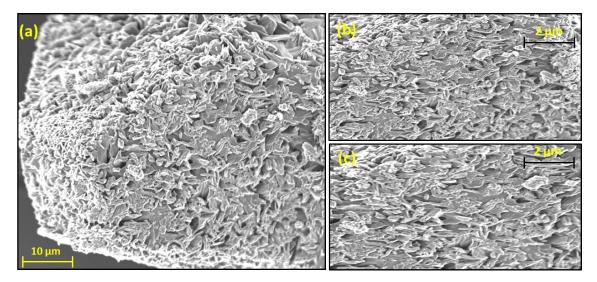


Fig. S9FESEM images of PCP-1 (a) before interaction with biothiols (b) & (c) after interaction with Cys & Hcy respectively

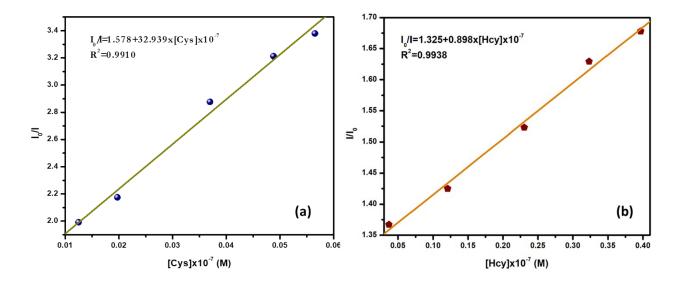


Fig. S10 Plot of (I_0/I) vs concentration of (a) Cysteine & (b) Homocysteine for the determination of limit of detection (LOD)

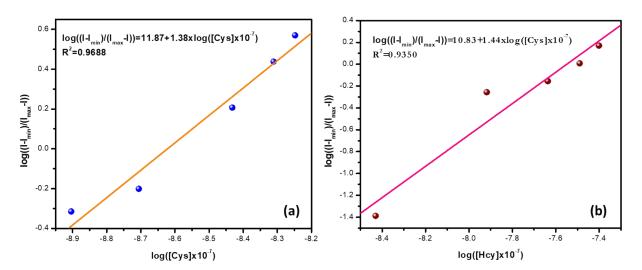


Fig. S11 Plot for the determination of association constant (Ka) by PCP-1 with biothiols (a) Cys & (b) Hcy

Fig. S12 Chemical diagram of biothiols.

Time-correlated single photon counting

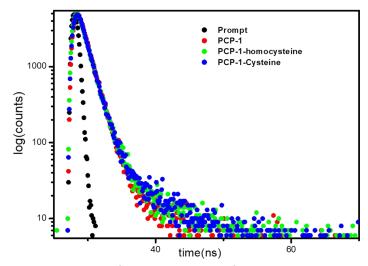


Fig. S13 Exited state life time parameters of PCP-1 & PCP-1+ biothiols

Table S1. UV-Vis spectral data of fluorophoric unit of PCP-1 obtained from TD-DFT

Frequency	Oscillator strength
256.16103422	0.00091249
281.75365333	0.01500598
286.3905245	0.0012989
300.39761924	0.06764115
358.22464437	0.10245338

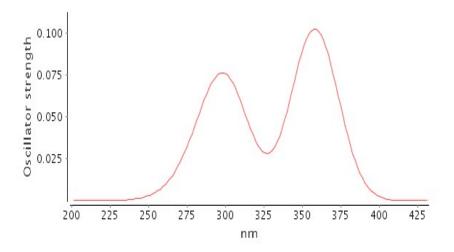


Fig. S14 UV-Vis spectrum of fluorophoric unit of PCP-1 obtained from TD-DFT

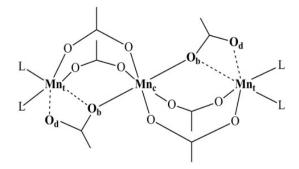


Fig. S15 Schematic structure of trinuclear complexes with $[Mn_3(\mu\text{-RCOO})_6]$ core, showing the bridging mode of the caboxylato ligands.