Electronic Supplementary Information (ESI)

Cationic Zr-based metal organic framework with enhanced acidic resistance for selective and efficient removal of CrO₄²⁻

Chao Jiang^a, Ruopei Sun^a, Ziyao Du^a, Vikramjeet Singh^c and Suwen Chen^{ab*}

^aRadiochemistry Lab, School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, P. R. China

^bKey Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000, Lanzhou, P. R. China

^cNanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London, UK

* Corresponding author: chensuwen@lzu.edu.cn

Scheme.S1. Synthesis of Ligand me-PyDC.

number	ZrCl ₄	me-PyDC	H ₂ O	formic acid	Draduat	Yield	
	(mg)	(mg)	(µL)	(µL)	Floduct	(mg)	
1	26.5	25.0	4960	40	white	25.1	
1	20.0			10	power		
2	26.5	25.0	4920	80	white	24.1	
	20.0			00	power		
3	26.5	25.0	4840	160	white	27.1	
					power		
4	26.5	25.0	4500	500	white	20.8	
·	20.0	20.0			power	20.0	
5	26.5	25.0	4000	1000	white	20.9	
					power		
6	26.5	25.0	3000	2000	white	3.7	
		- • •	• •		power		
7	26.5	25.0	2000	3000	no	0	
					solid	-	

Table.S1. Experimental parameters for synthesis of Zr-C-MOF.

Fig.S1. Powder X-ray diffraction (PXRD) patterns of UiO-66 and product synthesized at different experimental parameters.

Fig.S2. TGA curves of Zr-C-MOF.

Table.S2. Elemental analysis of Zr-C-MOF.

Sample	С %	Н %	N %
Zr-C-MOF	20.6	2.460	2.59

Fig.S3. 600 MHz ¹H-NMR, and 150 MHz ¹³C-NMR spectra. (a)¹H-NMR of me-PyDC (D₂O), δ =9.23 (s, 1H), 8.92 (d, J=7.8 Hz, 1H), 8.09 (d, J=7.8 Hz, 1H), 4.36 ppm (s, 3H). (b)¹³C-NMR of me-PyDC (D₂O), δ =164.7, 164.5, 154.2, 147.3, 146.3, 130.3, 126.2, 47.1 ppm. (c)¹H-NMR of me-PyDC in 0.5 M KOH/D₂O, δ =8.66 (d, J=7.8 Hz, 1H), 7.88 (d, J=7.8 Hz, 1H), 4.23 ppm (s, 3H). (d)¹H-NMR of Zr-C-MOF digested in

0.5 M KOH/D₂O, δ=8.67 (d, J=7.8 Hz, 1H), 8.30 (s, 0.75H, H atom from formate), 7.90 (d, J=7.8 Hz, 1H), 4.24 ppm (s, 3H).

Note: Absence of H peak at 9.2 ppm in (c) and (d) compared with (a) was due to deuterium exchange induced by proximity to N-methyl group in alkaline solution

Fig.S4. 600 MHz ¹H-NMR spectra. ¹H-NMR of UiO-66-me-PyDC digested in 0.5 M KOH/D₂O, δ=8.78 (s, 1H), 8.68 (d, J=7.8 Hz, 1H), 8.30 (s, 0.9H), 8.13 (d, J=7.8 Hz, 1.13 H), 7.90 (d, 7.8 Hz, 1H), 7.77 (d, 7.8 Hz, 1.12H), 4.24 (s, 3H).

Fig.S5. UV-visible spectrum of (a) $300 \text{mol} \cdot \text{L}^{-1} \text{Cl}^{-}$, NO_{3}^{-} , SO_{4}^{2-} (b) CrO_{4}^{2-} .

Fig.S6. UV-visible spectrum of (a) me-PyDC in water (b) me-PyDC and 400 ppm CrO_4^{2-} reduced by $FeCl_2(c)$ 400 ppm CrO_4^{2-} reduced by $FeCl_2(d)$ supernatant after adsorption by Zr-C-MOF in 400 ppm CrO_4^{2-} and further reduced by $FeCl_2$. To avoid the peak of CrO_4^{2-} at 275 nm covering the peak of ligand, CrO_4^{2-} was reduced by $FeCl_2$. All samples above were adjusted to pH=12, and centrifuged to afford clear solutions.

Fig.S7. Selectivity coefficient of Zr-C-MOF for Cr (VI) over other anion at 500-times excess.

Fig.S8. Adsorption-Desorption experiment of cycling experiment

	Pseudo-first-order kinetic model			Pseudo-second-order kinetic model			
Sample	q_e (mg g ⁻¹)	k_1 (min ⁻¹)	R ²	q _e (mg g ⁻¹)	k ₂ (g mg ⁻¹ min ⁻¹)	R ²	
Zr-C-MOF	49.49	13.46	0.78	49.65	9.20	>0.99	

Table.S3. Fitting results based on the Pseudo-first-order kinetic and Pseudo-secondorder kinetic models.

Table.S4. Fitting results based on the Langmuir and Freundlich models.

	Langmuir			Freundlich		
Sample	$\frac{q_m}{(mg \cdot g^{-1})}$	$\begin{array}{c} K_{\rm L} \\ ({\rm L}\cdot{\rm mg}^{-1}) \end{array}$	R ²	$k_{\rm F}$ (mg·g ⁻¹)	n	R ²
Zr-C-MOF	83.3	0.923	>0.99	23.7	2.41	0.69

Fig.S9. Sorption kinetics of CrO₄²⁻ by UiO-66-me-PyDC

Fig.S10. Fitting results of UiO-66-me-PyDC based on the Pseudo-second-order kinetic models.

Fig.S11. Effect of 500-fold competing anions on the adsorption of CrO_4^{2-} by UiO-66-me-PyDC.

Fig.S12. Adsorption isotherm of CrO₄²⁻ on UiO-66-me-PyDC.