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Scheme.S1. Synthesis of Ligand me-PyDC.



Table.S1. Experimental parameters for synthesis of Zr-C-MOF.

number ZrCl4

(mg)
me-PyDC

(mg)
H2O
(μL)

formic acid
(μL) Product Yield

(mg)

1 26.5 25.0 4960 40 white 
power 25.1

2 26.5 25.0 4920 80 white 
power 24.1

3 26.5 25.0 4840 160 white 
power 27.1

4 26.5 25.0 4500 500 white 
power 20.8

5 26.5 25.0 4000 1000 white 
power 20.9

6 26.5 25.0 3000 2000 white 
power 3.7

7 26.5 25.0 2000 3000 no
solid 0

Fig.S1. Powder X-ray diffraction (PXRD) patterns of UiO-66 and product synthesized 

at different experimental parameters.



Fig.S2. TGA curves of Zr-C-MOF.

Table.S2. Elemental analysis of Zr-C-MOF.

Sample C % H % N %

Zr-C-MOF 20.6 2.460 2.59





Fig.S3. 600 MHz 1H-NMR, and 150 MHz 13C-NMR spectra. (a)1H-NMR of me-PyDC 

(D2O), δ=9.23 (s, 1H), 8.92 (d, J=7.8 Hz, 1H), 8.09 (d, J=7.8 Hz, 1H), 4.36 ppm (s, 

3H). (b)13C-NMR of me-PyDC (D2O), δ=164.7, 164.5, 154.2, 147.3, 146.3, 130.3, 

126.2, 47.1 ppm. (c)1H-NMR of me-PyDC in 0.5 M KOH/D2O, δ=8.66 (d, J=7.8 Hz, 

1H), 7.88 (d, J=7.8 Hz, 1H), 4.23 ppm (s, 3H). (d)1H-NMR of Zr-C-MOF digested in 



0.5 M KOH/D2O, δ=8.67 (d, J=7.8 Hz, 1H), 8.30 (s, 0.75H, H atom from formate), 7.90 

(d, J=7.8 Hz, 1H), 4.24 ppm (s, 3H).

Note: Absence of H peak at 9.2 ppm in (c) and (d) compared with (a) was due to 

deuterium exchange induced by proximity to N-methyl group in alkaline solution

Fig.S4. 600 MHz 1H-NMR spectra. 1H-NMR of UiO-66-me-PyDC digested in 0.5 M 

KOH/D2O, δ=8.78 (s, 1H), 8.68 (d, J=7.8 Hz, 1H), 8.30 (s, 0.9H), 8.13 (d, J=7.8 Hz, 

1.13 H), 7.90 (d, 7.8 Hz, 1H), 7.77 (d, 7.8 Hz, 1.12H), 4.24 (s, 3H). 

Fig.S5. UV-visible spectrum of (a) 300mol·L-1 Cl-, NO3
-, SO4

2- (b) CrO4
2-.



Fig.S6. UV-visible spectrum of (a) me-PyDC in water (b) me-PyDC and 400 ppm 

CrO4
2- reduced by FeCl2(c) 400 ppm CrO4

2- reduced by FeCl2(d) supernatant after 

adsorption by Zr-C-MOF in 400 ppm CrO4
2- and further reduced by FeCl2. To avoid 

the peak of CrO4
2- at 275 nm covering the peak of ligand, CrO4

2- was reduced by 

FeCl2. All samples above were adjusted to pH=12, and centrifuged to afford clear 

solutions.



Fig.S7. Selectivity coefficient of Zr-C-MOF for Cr (VI) over other anion at 500-times 
excess.

Fig.S8. Adsorption-Desorption experiment of cycling experiment



Table.S3. Fitting results based on the Pseudo-first-order kinetic and Pseudo-second-

order kinetic models.

Pseudo-first-order kinetic model Pseudo-second-order kinetic model
Sample qe 

(mg g-1)
k1

(min-1) R2 qe 
(mg g-1)

k2

(g mg-1 min-1) R2

Zr-C-MOF 49.49 13.46 0.78 49.65 9.20 ＞0.99

Table.S4. Fitting results based on the Langmuir and Freundlich models.

Langmuir Freundlich
Sample qm

(mg·g-1)
KL

(L·mg-1) R2 kF

(mg·g-1) n R2

Zr-C-MOF 83.3 0.923 ＞0.99 23.7 2.41 0.69

Fig.S9. Sorption kinetics of CrO4
2- by UiO-66-me-PyDC



Fig.S10. Fitting results of UiO-66-me-PyDC based on the Pseudo-second-order kinetic 
models.

Fig.S11. Effect of 500-fold competing anions on the adsorption of CrO4
2- by UiO-66-

me-PyDC.



Fig.S12. Adsorption isotherm of CrO4
2- on UiO-66-me-PyDC.


