P₂S₂-Bridged Binuclear Metal Carbonyls from Dimerization of Coordinated Thiophosphoryl Groups: A Theoretical Study

Zhong Zhang,*^a Zuqing Chen,^a Zhipeng Yang,^a Jianping Wang,^a Liang Pu,^a Lingzhi Zhao,*^b R. Bruce King*^c

^aCollege of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China

^bSCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd.,

Qingyuan 511517, China

^cDepartment of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602, USA

Supporting Information:

Figure S1. Optimized other mononuclear PS complexes and dimers.

Figure S2. Molecular orbital (unit in a. u.) of Mn.

Figure S3. Comparing the molecular orbitals of $N_2S_2 P_2S_2$ and dMn.

Figure S4. Optimized transition states.

Table S1. Dimerization energies (in kcal/mol) with different methods.

Table S2. Dimerization energies (in kcal/mol).

Table S3. Wiberg bond indexes and natural charges of monomers.

Table S4. Wiberg bond indexes and natural charges of dimers.

Fig. S1. Optimized other mononuclear PS complexes and dimers showing selected bond distances (Å) and bond angles (degrees).

The new Double-Hybrid Density Functional (DHDF), which considers electron correlation by an additional E_c term derived from the MP2 method, are expected to give more reliable results in prediction of reaction energies.¹ Two such DHDF methods, namely p PB95²and B97-M³, were used with aug-cc-pVTZ basis sets herein for single point energy calculations of the optimized structures. The long range dispersion effect D4⁴ method is included in the p PB95 functional. These calculations were performed with the ORCA 4.2 program.^{5,6}

	ΔE	ΔE^{a}	ΔE^{b}	ΔE^{c}
dV	-6.1	-5.5	-13.0	-15.7
<i>d</i> Cr	-43.0	-26.8	-49.2	-43.4
<i>d</i> Mn	-24.6	-18.7	-18.4	-34.1
dFe	-28.0	-4.6	-39.5	-27.6
dCo	-3.7	-2.2	16.6	-12.1

TableS1. Dimerization energies (in kcal/mol) with different methods.

^a: Single point energies at CCSD/cc-pVDZ//M06L/cc-pVTZ level.

^b: Single point energies at p PB95-D4/aug-cc-pVTZ//M06L/cc-pVTZ level.

^c:Single point energies at B97-M/aug-cc-pVTZ//M06L/cc-pVTZ level.

Additional dimerization energies were determined at three different levels (see Table The ideal benchmark energiesare obtained bv S2). the CCSD(T)/cc-pVTZ//M06L/cc-pVTZmethod. However, our computational resources are limited for CCSD/cc-pVDZ//M06L/cc-pVTZcalculations. For the closed shell systems (*dV*, *dMn*, *dCo*), the CCSD/cc-pVDZ//M06L/cc-pVTZ energies match well our M06L/cc-pVTZ results with the largest difference being 5.9 kcal/mol. However, for the open shell systems (Fe and Cr), the CCSD/cc-pVDZ//M06L/cc-pVTZ single point calculation gives very bad results with major energy differences up to 23.4 kcal/mol (dFe) owing to the small basis sets limit as well as lacking of triple excitation. The robust p PB95-D3 method was obtained from the main group GMTKN30Database, but also provided good results with transition metal carbonyls.2 However, the MPN is not a self-consistent method, thus giving fluctuating ΔE_s , especially the ΔE of 16.6 kcal/mol for dCo. We cannot say that the p PB95-D4/aug-cc-pVTZ//M06L/cc-pVTZ is adequate, since it gives a positive ΔE for dCo, when all of the other methods give a negative ΔE for this system (Table S1). The B97-M/aug-cc-pVTZ//M06L/cc-pVTZ results are generally larger than those from M06L and CCSD. However, most of calculated ΔE s for dCr dMn and dFe are larger than -18.7 kcal/mol, indicating clearly thermodynamically favored dimerizations (see Table S2).

Figure S2. Molecular orbitals of Mn^4 with energies in atomic units.

The perpendicular HOMO-1 and in-planar HOMO-3 orbitals indicate two Mn–P π bonds. However, the two Mn–P π bonding orbitals are not degenerate in energy. Thus the orbital energy of HOMO-1 is -0.225a.u., as compared with -0.362a.u. for HOMO-3. The more efficient overlap between the Mn(CO)₄ and PS fragments leads to stabilization of the MO. Therefore, HOMO-3 has a more negative energy than HOMO-1 because of itsstronger Mn-P overlap.

The HOMO-4 and HOMO-5 are nearly degenerate in energy, since these orbitals are mainly similar P–S bonding orbitals.

Figure S3. Comparison of the molecular orbitals of $N_2S_2 P_2S_2$, and dMn.

 dMn^5 -TS (2.6, -3.8) dMn^4 -TS (25.7, 16.2) dFe^4 -TS (-12.4, -13.7) dCr^5 -TS (-11.7, -13.7) Figure S4. Optimized transition states. The activation free energies (in kcal/mol) at DLPNO-CCSD(T)/cc-pVTZ//M06L/cc-pVTZ and M06L/cc-pVTZ level, respectively.

 Table S2. Dimerization energies (in kcal/mol).

_					<u> </u>					
		dMo	dV	dCSV	dCS2V	dCV	dCo	dCSCo	<i>d</i> Mn	dFe
	ΔE	-3.4	-6.1	-7.8	-11.8	-20.7	-3.7	-14.2	-24.6	-28.0
	ΔH	-2.1	-6.5	-10.1	-13.3	-20.9	-2.9	-13.3	-23.5	-27.4
	ΔG	8.9	7.3	14.6	9.1	-8.3	8.3	-0.1	-10.0	-12.4

 Table S3. Wiberg bond indexes and natural charges of the monomers.

WBI	Mo	<u>V5</u>	<u>Co3</u>	<u>Mn4</u>	Cr5	Cr4	Fe4	Fe3	<u>Mn5</u>	<u>V6</u>	<u>Co4</u>
MP	2.03	1.67	1.59	1.57	1.01	1.67	1.06	1.53	<u>0.71</u>	0.70	<u>0.76</u>
PS	1.66	1.90	1.94	1.94	1.87	1.89	1.78	1.90	1.99	1.93	<u>1.98</u>
MS	0.43	0.33	0.33	0.31	0.16	0.34	0.18	0.29	<u>0.12</u>	0.20	<u>0.16</u>
qM	0.26	-3.08	-1.69	-2.57	-2.96	-2.38	-2.15	-1.60	-2.72	-2.94	-1.75
$q \mathbf{P}$	0.72	1.06	<u>0.87</u>	1.00	0.78	1.01	0.66	0.82	<u>0.53</u>	0.57	<u>0. 57</u>
qS	-0.37	<u>-0.26</u>	-0.25	<u>-0.25</u>	-0.26	-0.28	-0.27	-0.26	-0.32	-0.28	<u>-0.30</u>
qPS	0.35	0.80	0.62	0.74	0.52	0.73	0.39	0.56	0.21	0.29	0.27

Table S4. Wiberg bond indices and natural charges of the dimers.

WBI	dMo	<u>dV6</u>	<u>dV5</u>	<u>dMn5</u>	<u>dMn4</u>	<u>d</u> Cr5	<u>d</u> Cr4	<u><i>d</i></u> Fe4	<u><i>d</i></u> Fe3	<u>dCo4</u>	<u>dCo3</u>
MP	1.66	<u>0.58</u>	1.47	<u>0.67</u>	1.35	0.86	1.03	0.85	1.20	<u>0.70</u>	1.27
PS	0.90	1.02	1.00	<u>0.99</u>	<u>0.99</u>	1.07	1.05	1.05	1.01	1.00	1.00
MS	0.15	0.05	0.10	0.04	0.09	0.07	0.08	0.07	0.10	0.05	0.09
PP	0.03	0.05	0.04	0.03	0.05	0.25	0.19	0.21	0.10	0.04	0.04
SS	0.14	0.12	0.16	0.07	0.14	0.17	0.18	0.15	0.16	0.09	0.15
qM	0.34	-2.84	-2.89	-2.65	-2.35	-2.93	-2.04	-2.11	-1.44	-1.70	-1.42
$q \mathbf{P}$	0.51	<u>0.51</u>	0.87	<u>0. 49</u>	<u>0.73</u>	0.68	0.59	0.62	0.60	0.54	<u>0.65</u>
qS	-0.29	-0.27	-0.18	-0.34	<u>-0.18</u>	-0.15	-0.13	-0.17	-0.16	-0.31	-0.21
qPS	0.23	0.24	0.70	0.05	0.55	0.53	0.46	0.45	0.44	0.23	0.45

References

- (1) I. Y. Zhang and X. Xu, *A New-Generation Density Functional-Towards Chemical Accuracy for Chemistry of Main Group Elements.* Springer, **2013**.
- (2) L. Goerigk and S. Grimme, J. Chem. Theory Comput. 2011,7, 291.
- (3) L. Goerigk and S. Grimme, *Phys. Chem. Chem. Phys.* 2011, 13, 6670.
- (4) E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, *J. Chem. Phys.***2019**, 150, 154122.
- (5) Neese, F. "The ORCA program system" *Wiley Interdisciplinary Reviews: Computational Molecular Science*, **2012**, *2*, 73–78.
- (6) F. Neese, "Software update: the ORCA program system, version 4.0" *Wiley Interdisciplinary Reviews:Computational Molecular Science*, **2017**, *8*, 1327.