Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

SUPPORTING INFORMATION

1 NMR Spectra	2
1.1 Compound 1	2
1.2 Compound 2	5
1.3 Compound 3	
1.4 Compound 4	
1.5 Compound 5	
1.6 Compound 6	
2 Crystallographic refinement Data	20
2.1 Compound 1	20
2.2 Compound 2	
2.3 Compound 4	
2.4 Compound 5	
2.5 Compound 6b	
3 IR Spectra	
3.1 Compound 1	35
3.3 Compound 3	
3.4 Compound 4	
3.5 Compound 5	
3.6 Compound 6a	
4 Raman Spectra	40
4.1 Compound 1	40
4.2 Compound 2	40
4.3 Compound 3	
4.4 Compound 4	
4.5 Compound 5	
4.6 Compound 6a	
5 Mass Spectrometry	
5.1 Compound 1	
5.2 Compound 2	
5.3 Compound 3	
5.4 Compound 4	
5.5 Compound 5	
5.6 Compound 6a	

1 NMR Spectra

1.1 Compound 1 Figure S1: ¹H NMR spectra of compound 1

Figure S2: ¹⁹F{¹H} NMR spectrum of compound 1

Figure S4: ³¹P{¹H} NMR spectrum of compound 1

Figure S6: ¹³C{¹H} NMR spectrum of compound 1

1.2 Compound 2

Figure S7: ¹H NMR spectrum of compound 2

Figure S8: ¹⁹F{¹H} NMR spectrum of compound 2

Figure S10: $^{31}P\{^{1}H\}$ NMR spectrum of compound ${\bm 2}$

Figure S12: ¹³C{¹H} NMR spectrum of compound 2

1.3 Compound 3

Figure S13: ¹H NMR spectrum of compound 3

Figure S14: ¹⁹F{¹H} NMR spectrum of compound 3

Figure S15: ¹⁹F NMR spectrum of compound 3

Figure S16: ³¹P{¹H} NMR spectrum of compound **3**

Figure S17: ³¹P NMR spectrum of compound 3

Figure S18: ¹³C{¹H} NMR spectrum of compound **3**

1.4 Compound 4

Figure S19: ¹H NMR spectrum of compound 4

Figure S20: ¹⁹F{¹H} NMR spectrum of compound 4

Figure S22: $^{31}\text{P}\{^{1}\text{H}\}$ NMR spectrum of compound $\boldsymbol{4}$

Figure S24: ¹³C{¹H} NMR spectrum of compound 4

1.5 Compound 5

Figure S25: ¹H NMR spectrum of compound 5

Figure S26: ¹⁹F{¹H} NMR spectrum of compound 5

Figure S27: ¹⁹F NMR spectrum of compound 5

-225 -230 -235 -240 -245 -250 -255 -260 -265 -270 -275 -280 -285 -290 -295 -300 -305 -310 -315 -320 -325 -330 -335 -340 -345 f1 (ppm)

Figure S28: $^{31}\text{P}\{^{1}\text{H}\}$ NMR spectrum of compound $\boldsymbol{5}$

1.6 Compound 6

Figure S31: ¹H NMR spectrum of compound 6

Figure S34: ³¹P{¹H} NMR spectrum of compound 6

2 Crystallographic refinement Data

2.1 Compound 1

Table S1: Crystallographic data for compound 1

CCDC	1967513
Empirical formula	$C_4 H_{11} F I P$
Formula weight	236.00
Temperature	143(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pnma
Unit cell dimensions	a = 12.1430(5) Å
	b = 7.3397(3) Å
	c = 9.2655(5) Å
	$\alpha = 90^{\circ}$
	$\beta = 90^{\circ}$
	$\gamma = 90^{\circ}$
Volume	825.80(7) Å ³
Z	4
Density (calculated)	1.898 mg/m ³
Absorption coefficient	3.993 mm ⁻¹
F(000)	448
Crystal size	$0.100 \ge 0.050 \ge 0.050 \text{ mm}^3$
Theta range for data collection	4.356 - 30.493°
Index ranges	-17 ≤h ≤17, -10 ≤k ≤10, -13 ≤l ≤11
Reflections collected	8368
Independent reflections	1346 [$R_{int} = 0.0395$]
Data / restraints / parameters	1346 / 0 / 43
Goodness-of-fit on F ²	1.102
Final R indices [I>2sigma(I)]	$R_1 = 0.0223, wR_2 = 0.0460$
R indices (all data)	$R_1 = 0.0313, wR_2 = 0.0504$
Largest diff. peak and hole	1.020 and -0.573 e.Å ⁻³

Figure S37: Molecular structure of compound 1 in the crystal; DIAMOND representation, thermal ellipsoids shown at 50 % probability level. The CH_2F group is disordered over two positions; only one of the positions is shown.

Table S2: Bond lengths [Å] and angles $[\circ]$ of compound **1**.

P(1)-C(1)	1.768(3)	C(1)-P(1)-C(2)	110.0(2)	F(1)-C(3)-P(1)	108.8(2)
P(1)-C(2)	1.771(3)	C(1)-P(1)-C(3B)	109.6(2)	C(2)-P(1)-C(3)	109.8(2)
P(1)-C(3)	1.792(2)	C(2)-P(1)-C(3B)	109.8(2)	C(1)-P(1)-C(3)	109.6(2)
C(3)-F(1)	1.370(4)				

Table S3: Torsion angles [°] of product of **1**.

C(1)-P(1)-C(3)-F(1)	-176.1(2)	C(1)-(P1)-C(3)-H3BB	-60.0(2)
C(2)-P(1)-C(3)-F(1)	-55.2(3)	C(2)-(P1)-C(3)-H3BB	60.9(2)
C(3)-(P1)-C(1)-H1A	-59.3(3)	C(2)-(P1)-C(3)-H3BC	-179.2(2)
C(1)-(P1)-C(3)-H3BC	60.0(3)	C(3)-(P1)-C(1)-H1B	60.8(3)

2.2 Compound 2

Table S4: Crystallographic data for compound 2

CCDC	1967516
Empirical formula	$C_{13} H_{32} F I N_3 P$
Formula weight	407.28
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	<i>P</i> -1
Unit cell dimensions	a = 10.0648(3) Å
	b = 10.1439(5) Å

c = 18.6453(8) Å
$\alpha = 93.292(4)^{\circ}$
$\beta = 92.580(3)^{\circ}$
$\gamma = 90.104(3)^{\circ}$
1898.53(14) Å ³
4
1.425 mg/m ³
1.774 mm ⁻¹
832
$0.100 \ge 0.100 \ge 0.020 \text{ mm}^3$
4.151 - 28.282°
-13 \leq h \leq 13, -13 \leq k \leq 13, -24 \leq l \leq 24
30663
9397 [$R_{int} = 0.0592$]
9397 / 0 / 367
1.013
$R_1 = 0.0430, wR_2 = 0.0717$
$R_1 = 0.0826, wR_2 = 0.0860$
1.020 and -0.588 e.Å ⁻³

Figure S38: Molecular structure of compound **2** in the crystal, DIAMOND representation, thermal ellipsoids shown at 50 % probability level.

Table S5: Bond lengths [Å] and angles $[\circ]$ of compound 2.

P(1)-N(3)	1.612(3)	N(2)-C(5)	1.479(4)	C(11)-H(11B)	0.96(2)
P(1)-N(2)	1.620(3)	N(1)-C(3)	1.473(5)	C(16)-C(17)	1.514(5)
P(1)-N(1)	1.621(3)	N(1)-C(1)	1.479(4)	C(16)-H(16A)	0.95(2)

P(1)-C(13)	1.824(3)	C(19)-C(18)	1.506(5)	C(16)-H(16B)	0.95(2)
P(2)-N(5)	1.609(3)	C(13)-H(13A)	0.99(2)	C(2)-C(1)	1.502(5)
P(2)-N(6)	1.613(3)	C(13)-H(13B)	0.99(2)	C(26)-H(26A)	0.94(2)
P(2)-N(4)	1.616(3)	C(5)-C(6)	1.509(5)	C(26)-H(26B)	0.94(2)
P(2)-C(26)	1.813(4)	C(5)-H(5A)	0.99(2)	C(9)-C(10)	1.506(5)
N(5)-C(20)	1.486(4)	C(5)-H(5B)	0.99(2)	C(9)-H(9A)	0.98(2)
N(5)-C(18)	1.487(4)	C(7)-C(8)	1.505(5)	C(9)-H(9B)	0.98(2)
N(3)-C(9)	1.482(4)	C(7)-H(7A)	0.90(2)	C(4)-C(3)	1.516(5)
N(3)-C(11)	1.486(4)	C(7)-H(7B)	0.90(2)	C(15)-C(14)	1.510(6)
F(2)-C(26)	1.393(4)	N(4)-C(16)	1.479(4)	C(22)-C(23)	1.482(6)
N(6)-C(22)	1.483(5)	N(4)-C(14)	1.487(4)	C(14)-H(14A)	0.93(2)
N(6)-C(24)	1.500(4)	C(11)-C(12)	1.506(5)	C(14)-H(14B)	0.93(2)
F(1)-C(13)	1.378(4)	C(11)-H(11A)	0.96(2)	C(3)-H(3A)	0.95(2)
N(2)-C(7)	1.474(4)	C(24)-H(24B)	0.94(3)	C(3)-H(3B)	0.95(2)
C(11)-N(3)-P(1)	119.5(2)	N(3)-P(1)-N(2)	112.7(2)	C(18)-H(18A)	0.99(2)
C(22)-N(6)-C(24)	115.7(3)	N(3)-P(1)-N(1)	109.0(2)	C(18)-H(18B)	0.99(2)
C(22)-N(6)-P(2)	121.5(2)	N(2)-P(1)-N(1)	111.4(2)	C(20)-C(21)	1.497(5)
C(24)-N(6)-P(2)	119.4(2)	N(3)-P(1)-C(13)	106.7(2)	C(1)-H(1A)	1.00(3)
C(7)-N(2)-C(5)	116.4(3)	N(2)-P(1)-C(13)	106.4(2)	F(1)-C(13)-P(1)	112.5(2)
C(7)-N(2)-P(1)	120.6(2)	N(1)-P(1)-C(13)	110.5(2)	N(2)-C(5)-C(6)	113.1(3)
C(5)-N(2)-P(1)	121.4(2)	N(5)-P(2)-N(6)	113.4(2)	N(2)-C(7)-C(8)	114.5(3)
C(3)-N(1)-C(1)	116.5(3)	N(5)-P(2)-N(4)	109.4(2)	C(16)-N(4)-C(14)	116.1(3)
C(3)-N(1)-P(1)	123.1(2)	N(1)-C(3)-C(4)	113.7(3)	C(16)-N(4)-P(2)	123.7(2)
C(1)-N(1)-P(1)	120.4(3)	N(5)-C(18)-C(19)	112.8(3)	C(14)-N(4)-P(2)	120.2(2)
C(9)-N(3)-P(1)	123.5(2)	N(5)-C(20)-C(21)	113.1(3)	N(3)-C(11)-C(12)	113.4(3)
N(6)-P(2)-N(4)	110.8(2)	N(1)-C(1)-C(2)	113.7(4)	N(4)-C(16)-C(17)	114.2(3)
N(5)-P(2)-C(26)	105.5(2)	N(3)-C(9)-C(10)	112.8(3)	F(2)-C(26)-P(2)	112.8(3)
N(6)-P(2)-C(26)	106.8(2)	C(23)-C(22)-N(6)	113.6(3)	C(20)-N(5)-P(2)	123.5(2)
N(4)-P(2)-C(26)	110.8(2)	N(4)-C(14)-C(15)	111.9(4)	C(18)-N(5)-P(2)	120.3(2)
C(20)-N(5)-C(18)	116.1(3)	C(25)-C(24)-N(6)	114.3(3)	C(9)-N(3)-C(11)	116.0(3)
C(1)-H(1B)	1.00(3)	C(24)-C(25)	1.484(5)	C(24)-H(24A)	0.94(3)

Table S6: Torsion angles [°] of product of **2**.

N(6)-P(2)-N(5)-C(20)	-3.2(3)	N(6)-P(2)-N(4)-C(16)	110.3(3)
N(4)-P(2)-N(5)-C(20)	121.0(3)	C(26)-P(2)-N(4)-C(16)	-131.3(3)
C(26)-P(2)-N(5)-C(20)	-119.8(3)	N(5)-P(2)-N(4)-C(14)	163.8(3)
N(6)-P(2)-N(5)-C(18)	173.5(3)	N(6)-P(2)-N(4)-C(14)	-70.5(3)
N(4)-P(2)-N(5)-C(18)	-62.3(3)	C(26)-P(2)-N(4)-C(14)	47.9(4)
C(26)-P(2)-N(5)-C(18)	56.9(3)	C(9)-N(3)-C(11)-C(12)	57.9(4)
N(2)-P(1)-N(3)-C(9)	2.0(3)	P(1)-N(3)-C(11)-C(12)	-111.5(3)
N(1)-P(1)-N(3)-C(9)	126.3(3)	C(14)-N(4)-C(16)-C(17)	51.6(5)
C(13)-P(1)-N(3)-C(9)	-114.3(3)	P(2)-N(4)-C(16)-C(17)	-129.2(3)
N(2)-P(1)-N(3)-C(11)	170.6(3)	N(5)-P(2)-C(26)-F(2)	177.4(3)
N(1)-P(1)-N(3)-C(11)	-65.1(3)	N(6)-P(2)-C(26)-F(2)	56.4(3)
C(13)-P(1)-N(3)-C(11)	54.3(3)	N(4)-P(2)-C(26)-F(2)	-64.4(3)
N(5)-P(2)-N(6)-C(22)	88.7(3)	C(11)-N(3)-C(9)-C(10)	53.3(4)

N(4)-P(2)-N(6)-C(22)	-34.8(3)	P(1)-N(3)-C(9)-C(10)	-137.7(3)
C(26)-P(2)-N(6)-C(22)	-155.5(3)	C(24)-N(6)-C(22)-C(23)	-83.4(4)
N(5)-P(2)-N(6)-C(24)	-69.6(3)	P(2)-N(6)-C(22)-C(23)	117.6(4)
N(4)-P(2)-N(6)-C(24)	167.0(3)	C(16)-N(4)-C(14)-C(15)	59.9(5)
C(26)-P(2)-N(6)-C(24)	46.2(3)	P(2)-N(4)-C(14)-C(15)	-119.4(3)
N(3)-P(1)-N(2)-C(7)	-72.7(3)	C(1)-N(1)-C(3)-C(4)	51.5(4)
N(1)-P(1)-N(2)-C(7)	164.3(3)	P(1)-N(1)-C(3)-C(4)	-129.3(3)
C(13)-P(1)-N(2)-C(7)	43.8(3)	C(20)-N(5)-C(18)-C(19)	60.8(4)
N(3)-P(1)-N(2)-C(5)	91.9(3)	P(2)-N(5)-C(18)-C(19)	-116.1(3)
N(1)-P(1)-N(2)-C(5)	-31.1(3)	C(18)-N(5)-C(20)-C(21)	56.0(5)
C(13)-P(1)-N(2)-C(5)	-151.6(3)	P(2)-N(5)-C(20)-C(21)	-127.2(3)
N(3)-P(1)-N(1)-C(3)	-18.4(3)	C(3)-N(1)-C(1)-C(2)	60.7(5)
N(2)-P(1)-N(1)-C(3)	106.6(3)	P(1)-N(1)-C(1)-C(2)	-118.5(3)
C(13)-P(1)-N(1)-C(3)	-135.3(3)	C(22)-N(6)-C(24)-C(25)	90.3(4)
N(3)-P(1)-N(1)-C(1)	160.8(3)	P(2)-N(6)-C(24)-C(25)	-110.2(4)
N(2)-P(1)-N(1)-C(1)	-74.2(3)	P(1)-N(2)-C(5)-C(6)	106.7(3)
C(13)-P(1)-N(1)-C(1)	43.8(3)	C(5)-N(2)-C(7)-C(8)	79.1(4)
N(3)-P(1)-C(13)-F(1)	173.1(2)	P(1)-N(2)-C(7)-C(8)	-115.5(3)
N(2)-P(1)-C(13)-F(1)	52.6(3)	N(5)-P(2)-N(4)-C(16)	-15.4(4)
N(1)-P(1)-C(13)-F(1)	-68.5(3)	C(7)-N(2)-C(5)-C(6)	-88.1(4)

2.3 Compound 4

Table S7: Crystallographic data for compound 4

CCDC	1967514
Empirical formula	$C_{10}H_{14}FIN_3P$
Formula weight	353.11
Temperature	143(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	<i>P</i> 2 ₁ /c
Unit cell dimensions	a = 8.7566(2) Å
	b = 9.3257(3) Å
	c = 17.2049(5) Å
	$\alpha = 90^{\circ}$
	$\beta = 100.741(2)^{\circ}$
	$\gamma = 90^{\circ}$
Volume	1380.36(7) Å ³
Z	4
Density (calculated)	1.699 mg/m^3
Absorption coefficient	2.427 mm ⁻¹

F(000)	688
Crystal size	0.393 x 0.307 x 0.165 mm ³
Theta range for data collection	4.226 - 30.505°
Index ranges	-12 $\leq h \leq$ 12, -13 $\leq k \leq$ 13, -24 $\leq l \leq$ 24
Reflections collected	27409
Independent reflections	$4202 [R_{int} = 0.0388]$
Data / restraints / parameters	4202 / 0 / 152
Goodness-of-fit on F ²	1.021
Final R indices [I>2sigma(I)]	$R_1 = 0.0241, wR_2 = 0.0497$
R indices (all data)	$R_1=0.0351,wR_2=0.0547$
Largest diff. peak and hole	0.916 and -0.561 e.Å ⁻³

Figure S39: Molecular structure of compound **4** in the crystal; DIAMOND representation; thermal ellipsoids drawn at 50 % probability level.

Table S8: Bond lengths [Å] and angles [°] of compound **4**.

P(1)-C(2)	1.794(2)	C(2)-P(1)-C(8)	110.60(9)	C(9)-C(8)	1.531(3)
P(1)-C(5)	1.799(2)	C(5)-P(1)-C(8)	110.09(9)	C(9)-H(9A)	0.96(2)
P(1)-C(8)	1.804(2)	C(2)-P(1)-C(1)	105.84(9)	C(9)-H(9B)	0.96(2)
P(1)-C(1)	1.818(2)	C(5)-P(1)-C(1)	108.7(2)	C(5)-H(5A)	0.92(2)
C(2)-C(3)	1.532(3)	C(8)-P(1)-C(1)	111.27(9)	C(5)-H(5B)	0.92(2)
C(2)-H(2A)	0.92(2)	C(3)-C(2)-P(1)	115.9(2)	C(4)-N(1)	1.143(3)
C(2)-H(2B)	0.92(2)	C(7)-C(6)-C(5)	111.7(2)	C(4)-C(3)	1.465(3)
C(6)-C(7)	1.457(3)	N(3)-C(10)-C(9)	178.6(2)	C(8)-H(8A)	0.92(2)
C(6)-C(5)	1.535(3)	C(10)-C(9)-C(8)	109.7(2)	C(8)-H(8B)	0.92(2)
C(6)-H(6A)	0.92(2)	C(6)-C(5)-P(1)	112.7(2)	C(1)-H(1A)	0.93(2)
C(6)-H(6B)	0.92(2)	N(1)-C(4)-C(3)	176.1(2)	C(1)-H(1B)	0.93(2)

F(1)-C(1)	1.384(2)	C(9)-C(8)-P(1)	115.1(2)	C(3)-H(3A)	0.93(2)
N(2)-C(7)	1.140(3)	F(1)-C(1)-P(1)	106.9(2)	C(3)-H(3B)	0.93(2)
C(10)-N(3)	1.136(3)	C(4)-C(3)-C(2)	108.0(2)	C(2)-P(1)-C(5)	110.25(9)
C(10)-C(9)	1.469(3)	N(2)-C(7)-C(6)	178.6(3)		

Table S9: Torsion angles [°] of product of **4**.

C(5)-P(1)-C(2)-C(3)	41.2(2)	C(5)-P(1)-C(1)-F(1)	65.4(2)
C(8)-P(1)-C(2)-C(3)	-80.8(2)	C(8)-P(1)-C(1)-F(1)	-173.2(2)
C(1)-P(1)-C(2)-C(3)	158.6(2)	P(1)-C(2)-C(3)-C(4)	179.6(2)
C(7)-C(6)-C(5)-P(1)	-180.0(2)	C(2)-P(1)-C(8)-C(9)	-74.6(2)
C(2)-P(1)-C(5)-C(6)	-174.9(2)	C(5)-P(1)-C(8)-C(9)	163.3(2)
C(8)-P(1)-C(5)-C(6)	-52.6(2)	C(1)-P(1)-C(8)-C(9)	42.8(2)
C(1)-P(1)-C(5)-C(6)	69.6(1)	C(2)-P(1)-C(1)-F(1)	-53.0(2)
C(10)-C(9)-C(8)-P(1)	174.9(2)		

2.4 Compound 5

Table S10: Crystallographic data for compound 5

CCDC	1967515
Empirical formula	$C_{37}H_{30.57}FIO_{1.28}P_2$
Formula weight	703.57
Temperature	123(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	<i>P</i> -1
Unit cell dimensions	a = 11.3894(4) Å
	b = 13.0313(6) Å
	c = 13.4302(4) Å
	$\alpha = 64.227(4)^{\circ}$
	$\beta = 66.641(3)^{\circ}$
	$\gamma = 68.195(4)^{\circ}$
Volume	1599.41(13) Å ³
Z	2
Density (calculated)	1.461 mg/m ³
Absorption coefficient	1.136 mm ⁻¹
F(000)	710
Crystal size	$0.250 \text{ x} 0.100 \text{ x} 0.080 \text{ mm}^3$
Theta range for data collection	4.110 - 30.507°
Index ranges	-16 \leq h \leq 16, -18 \leq k \leq 18, -19 \leq l \leq 19
Reflections collected	32102

Independent reflections	9734 [$R_{int} = 0.0358$]
Data / restraints / parameters	9734 / 3 / 422
Goodness-of-fit on F ²	1.041
Final R indices [I>2sigma(I)]	$R_1 = 0.0410, wR_2 = 0.0929$
R indices (all data)	$R_1 = 0.0555, wR_2 = 0.1020$
Largest diff. peak and hole	2.846 and -0.832 e.Å ⁻³

Figure S40: Molecular structure of compound **5** in the solid state, DIAMOND representation, thermal ellipsoids shown at 50 % probability level. Water position is only occupied by a third.

Table S11: Bond lengths [Å] and angles [°] of compound **5**.

P(2)-C(32)	1.829(2)	C(15)-C(16)	1.389(3)	C(23)-H(23)	0.93(3)
P(2)-C(26)	1.829(2)	C(15)-H(15)	0.95(3)	C(24)-H(24)	0.92(3)
P(2)-C(25)	1.844(2)	C(13)-C(8)	1.387(4)	C(26)-C(31)	1.390(3)
P(1)-C(2)	1.784(2)	C(13)-C(12)	1.397(4)	C(26)-C(27)	1.393(3)
P(1)-C(14)	1.784(2)	C(13)-H(13)	0.92(3)	C(18)-H(18)	0.85(3)
P(1)-C(8)	1.789(2)	C(19)-C(18)	1.383(3)	C(37)-C(36)	1.394(4)
P(1)-C(1)	1.831(3)	C(25)-C(24)	1.394(3)	C(37)-H(37)	0.94(3)
O(1)-C(19)	1.384(3)	C(25)-C(20)	1.394(3)	C(3)-C(4)	1.391(4)
O(1)-C(20)	1.393(3)	C(16)-C(17)	1.384(4)	C(3)-H(3)	0.95(3)
C(14)-C(15)	1.395(3)	C(16)-H(16)	0.86(3)	C(31)-C(30)	1.393(4)

C(14)-C(19)	1.398(3)	C(1)-F(1)	1.376(3)	C(31)-H(31)	0.93(3)
C(11)-C(12)	1.376(5)	C(1)-H(1A)	0.94(2)	C(28)-C(29)	1.381(4)
C(11)-C(10)	1.377(5)	C(1)-H(1B)	0.94(2)	C(28)-C(27)	1.388(4)
C(11)-H(11)	1.01(4)	C(20)-C(21)	1.391(3)	C(28)-H(28)	0.96(3)
C(22)-C(21)	1.386(4)	C(17)-C(18)	1.380(4)	C(7)-C(6)	1.388(4)
C(22)-C(23)	1.393(4)	C(12)-H(12)	0.90(4)	C(7)-H(7)	0.91(4)
C(22)-H(22)	0.94(3)	C(32)-C(37)	1.388(4)	C(8)-C(9)	1.397(4)
C(2)-C(7)	1.390(4)	C(32)-C(33)	1.400(4)	C(30)-C(29)	1.381(4)
C(2)-C(3)	1.396(3)	C(23)-C(24)	1.387(4)	C(30)-H(30)	0.88(4)
C(21)-H(21)	0.92(3)	C(14)-P(1)-C(8)	111.4(2)	C(27)-H(27)	0.90(3)
C(29)-H(29)	0.95(3)	C(2)-P(1)-C(1)	108.6(2)	C(23)-C(24)-C(25)	121.2(2)
C(33)-C(34)	1.380(4)	C(14)-P(1)-C(1)	107.2(2)	C(31)-C(26)-C(27)	118.6(2)
C(33)-H(33)	1.05(3)	C(8)-P(1)-C(1)	110.0(2)	C(31)-C(26)-P(2)	116.7(2)
C(4)-C(5)	1.375(4)	C(19)-O(1)-C(20)	121.7(2)	C(27)-C(26)-P(2)	124.7(2)
C(4)-H(4)	0.89(3)	C(15)-C(14)-C(19)	119.3(2)	C(17)-C(18)-C(19)	118.7(2)
C(9)-C(10)	1.391(4)	C(15)-C(14)-P(1)	122.2(2)	C(32)-C(37)-C(36)	120.3(3)
C(9)-H(9)	0.94(4)	C(19)-C(14)-P(1)	118.5(2)	C(4)-C(3)-C(2)	119.1(3)
C(36)-C(35)	1.379(5)	C(12)-C(11)-C(10)	120.8(3)	C(26)-C(31)-C(30)	120.5(2)
C(34)-C(35)	1.393(5)	C(21)-C(22)-C(23)	120.3(2)	C(29)-C(28)-C(27)	120.2(3)
C(34)-H(34)	0.99(4)	C(7)-C(2)-C(3)	120.4(2)	C(6)-C(7)-C(2)	119.7(3)
C(35)-H(35)	0.93(4)	C(7)-C(2)-P(1)	119.5(2)	C(13)-C(8)-C(9)	120.8(2)
C(5)-C(6)	1.383(5)	C(3)-C(2)-P(1)	120.0(2)	C(13)-C(8)-P(1)	120.5(2)
C(5)-H(5)	0.92(4)	C(16)-C(15)-C(14)	119.6(2)	C(9)-C(8)-P(1)	118.7(2)
C(10)-H(10)	0.92(4)	C(8)-C(13)-C(12)	119.2(3)	C(29)-C(30)-C(31)	120.1(3)
C(6)-H(6)	0.94(4)	C(18)-C(19)-O(1)	123.6(2)	C(28)-C(27)-C(26)	120.7(3)
O(2)-H(210)	0.89(2)	C(18)-C(19)-C(14)	121.1(2)	C(22)-C(21)-C(20)	118.2(2)
O(2)-H(211)	0.88(2)	O(1)-C(19)-C(14)	115.1(2)	C(30)-C(29)-C(28)	119.8(3)
C(32)-P(2)-C(26)	100.6(2)	C(24)-C(25)-C(20)	117.0(2)	C(34)-C(33)-C(32)	120.5(3)
C(32)-P(2)-C(25)	102.2(2)	C(24)-C(25)-P(2)	126.4(2)	C(5)-C(4)-C(3)	120.2(3)
C(26)-P(2)-C(25)	101.4(2)	C(20)-C(25)-P(2)	116.3(2)	C(10)-C(9)-C(8)	119.0(3)
C(2)-P(1)-C(14)	109.5(2)	C(17)-C(16)-C(15)	119.9(2)	C(35)-C(36)-C(37)	120.2(3)
C(2)-P(1)-C(8)	110.1(2)	F(1)-C(1)-P(1)	109.3(2)	C(33)-C(34)-C(35)	120.0(3)
C(37)-C(32)-C(33)	119.0(2)	C(21)-C(20)-O(1)	122.5(2)	C(36)-C(35)-C(34)	119.9(3)
C(37)-C(32)-P(2)	124.9(2)	C(21)-C(20)-C(25)	123.1(2)	C(4)-C(5)-C(6)	120.9(3)
C(33)-C(32)-P(2)	116.0(2)	O(1)-C(20)-C(25)	114.2(2)	C(11)-C(10)-C(9)	120.2(3)
C(24)-C(23)-C(22)	120.1(2)	C(18)-C(17)-C(16)	121.4(2)	C(5)-C(6)-C(7)	119.7(3)
C(11)-C(12)-C(13)	120.0(3)	H(210)-O(2)-H(211)	103(3)		

Table S12: Torsion angles $[^{\circ}]$ of product of **5**.

C(2)-P(1)-C(14)-C(15)	3.8(2)	C(15)-C(14)-C(19)-C(18)	0.1(3)
C(8)-P(1)-C(14)-C(15)	-118.2(2)	P(1)-C(14)-C(19)-C(18)	178.8(2)
C(1)-P(1)-C(14)-C(15)	121.4(2)	C(15)-C(14)-C(19)-O(1)	174.9(2)
C(2)-P(1)-C(14)-C(19)	-174.9(2)	P(1)-C(14)-C(19)-O(1)	-6.3(3)
C(8)-P(1)-C(14)-C(19)	63.1(2)	C(32)-P(2)-C(25)-C(24)	2.2(2)
C(1)-P(1)-C(14)-C(19)	-57.3(2)	C(26)-P(2)-C(25)-C(24)	105.8(2)
C(14)-P(1)-C(2)-C(7)	-95.3(2)	C(32)-P(2)-C(25)-C(20)	176.0(2)

C(8)-P(1)-C(2)-C(7)	27.5(3)	C(26)-P(2)-C(25)-C(20)	-80.3(2)
C(1)-P(1)-C(2)-C(7)	148.0(2)	C(14)-C(15)-C(16)-C(17)	-0.4(4)
C(14)-P(1)-C(2)-C(3)	82.4(2)	C(2)-P(1)-C(1)-F(1)	-50.7(2)
C(8)-P(1)-C(2)-C(3)	-154.8(2)	C(14)-P(1)-C(1)-F(1)	-168.9(2)
C(1)-P(1)-C(2)-C(3)	-34.3(2)	C(8)-P(1)-C(1)-F(1)	69.9(2)
C(19)-C(14)-C(15)-C(16)	0.1(3)	C(19)-O(1)-C(20)-C(21)	-29.9(3)
P(1)-C(14)-C(15)-C(16)	-178.6(2)	C(19)-O(1)-C(20)-C(25)	155.6(2)
C(20)-O(1)-C(19)-C(18)	-53.0(3)	C(24)-C(25)-C(20)-C(21)	1.1(3)
C(20)-O(1)-C(19)-C(14)	132.3(2)	P(2)-C(25)-C(20)-C(21)	-173.4(2)
C(26)-P(2)-C(32)-C(37)	-33.2(2)	C(24)-C(25)-C(20)-O(1)	175.6(2)
C(25)-P(2)-C(32)-C(37)	71.1(2)	P(2)-C(25)-C(20)-O(1)	1.1(3)
C(26)-P(2)-C(32)-C(33)	145.4(2)	C(15)-C(16)-C(17)-C(18)	0.4(4)
C(25)-P(2)-C(32)-C(33)	-110.4(2)	C(10)-C(11)-C(12)-C(13)	-0.8(4)
C(21)-C(22)-C(23)-C(24)	0.3(4)	C(8)-C(13)-C(12)-C(11)	1.6(4)
C(22)-C(23)-C(24)-C(25)	-0.6(4)	C(14)-P(1)-C(8)-C(13)	16.6(2)
C(20)-C(25)-C(24)-C(23)	0.0(3)	C(1)-P(1)-C(8)-C(13)	135.2(2)
P(2)-C(25)-C(24)-C(23)	173.8(2)	C(2)-P(1)-C(8)-C(9)	75.3(2)
C(32)-P(2)-C(26)-C(31)	-76.5(2)	C(14)-P(1)-C(8)-C(9)	-163.1(2)
C(25)-P(2)-C(26)-C(31)	178.6(2)	C(1)-P(1)-C(8)-C(9)	-44.4(2)
C(32)-P(2)-C(26)-C(27)	103.5(2)	C(26)-C(31)-C(30)-C(29)	1.6(4)
C(25)-P(2)-C(26)-C(27)	-1.4(2)	C(29)-C(28)-C(27)-C(26)	0.3(4)
C(16)-C(17)-C(18)-C(19)	-0.2(4)	C(31)-C(26)-C(27)-C(28)	1.7(4)
O(1)-C(19)-C(18)-C(17)	-174.4(2)	P(2)-C(26)-C(27)-C(28)	-178.3(2)
C(14)-C(19)-C(18)-C(17)	0.0(4)	C(23)-C(22)-C(21)-C(20)	0.7(4)
C(33)-C(32)-C(37)-C(36)	1.6(4)	O(1)-C(20)-C(21)-C(22)	-175.4(2)
P(2)-C(32)-C(37)-C(36)	-179.9(2)	C(25)-C(20)-C(21)-C(22)	-1.4(4)
C(7)-C(2)-C(3)-C(4)	-0.6(4)	C(31)-C(30)-C(29)-C(28)	0.5(4)
P(1)-C(2)-C(3)-C(4)	-178.3(2)	C(27)-C(28)-C(29)-C(30)	-1.4(4)
C(27)-C(26)-C(31)-C(30)	-2.6(4)	C(37)-C(32)-C(33)-C(34)	-1.2(4)
P(2)-C(26)-C(31)-C(30)	177.3(2)	P(2)-C(32)-C(33)-C(34)	-179.8(2)
C(3)-C(2)-C(7)-C(6)	-0.7(5)	C(2)-C(3)-C(4)-C(5)	1.9(4)
P(1)-C(2)-C(7)-C(6)	177.0(3)	C(13)-C(8)-C(9)-C(10)	-0.4(4)
C(12)-C(13)-C(8)-C(9)	-0.9(4)	P(1)-C(8)-C(9)-C(10)	179.2(2)
C(12)-C(13)-C(8)-P(1)	179.5(2)	C(32)-C(37)-C(36)-C(35)	-0.5(4)
C(2)-P(1)-C(8)-C(13)	-105.1(2)	C(32)-C(33)-C(34)-C(35)	-0.2(5)
C(12)-C(11)-C(10)-C(9)	-0.6(5)	C(37)-C(36)-C(35)-C(34)	-0.9(4)
C(8)-C(9)-C(10)-C(11)	1.2(5)	C(33)-C(34)-C(35)-C(36)	1.2(5)
C(4)-C(5)-C(6)-C(7)	0.7(5)	C(3)-C(4)-C(5)-C(6)	-2.0(5)
C(2)-C(7)-C(6)-C(5)	0.7(5)		

2.5 Compound 6b

Table S13: Crystallographic data for compound 6

CCDC	1967517
Empirical formula	$C_{13} \operatorname{H}_{12} F \operatorname{O} P$
Formula weight	234.20
Temperature	143(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	<i>P</i> -1
Unit cell dimensions	a = 11.5552(17) Å
	b = 13.7077(16) Å
	c = 17.2666(11) Å
	$\alpha = 69.635(9)^{\circ}$
	$\beta = 78.081(9)^{\circ}$
	$\gamma = 65.391(13)^{\circ}$
Volume	2325.0(5) Å ³
Z	8
Density (calculated)	1.338 mg/m ³
Absorption coefficient	0.224 mm ⁻¹
F(000)	976
Crystal size	0.200 x 0.200 x 0.100 mm ³
Theta range for data collection	4.104 - 26.372°
Index ranges	-14 ≤h ≤14, -17 ≤k ≤17, -21 ≤l ≤21
Reflections collected	34798
Independent reflections	9439 [$R_{int} = 0.0508$]
Data / restraints / parameters	9439 / 0 / 624
Goodness-of-fit on F ²	1.016
Final R indices [I>2sigma(I)]	$R_1 = 0.0489, wR_2 = 0.1157$
R indices (all data)	$R_1 = 0.0929, wR_2 = 0.1424$
Largest diff. peak and hole	0.470 and -0.289 e.Å ⁻³

Figure S41: Molecular structure of (fluoromethyl)diphenyl phosphine oxide in the crystal. DIAMOND representation, thermal ellipsoids shown at 50 % probability level.

P(1)-O(1)	1.489(2)	C(33)-C(34)	1.395(3)	C(48)-C(47)	1.386(3)
P(1)-C(7)	1.801(2)	C(45)-C(44)	1.391(3)	C(48)-H(48)	0.90(3)
P(1)-C(1)	1.809(2)	C(45)-H(45)	0.91(3)	C(47)-H(47)	0.87(3)
P(1)-C(13)	1.815(2)	C(52)-H(52A)	0.98(2)	C(22)-H(22)	0.95(3)
P(2)-O(2)	1.486(2)	C(52)-H(52B)	0.98(2)	C(51)-C(50)	1.391(3)
P(2)-C(20)	1.800(2)	C(6)-C(5)	1.390(3)	C(51)-H(51)	0.95(3)
P(2)-C(14)	1.812(2)	C(6)-H(6)	0.97(3)	C(34)-C(35)	1.387(3)
P(2)-C(26)	1.817(2)	C(31)-C(30)	1.377(4)	C(34)-H(34)	0.97(3)
P(3)-O(3)	1.490(2)	C(31)-C(32)	1.394(3)	C(42)-H(42)	0.95(3)
P(3)-C(33)	1.807(2)	C(31)-H(31)	0.97(3)	C(29)-C(28)	1.390(3)
P(3)-C(27)	1.807(2)	C(30)-C(29)	1.386(4)	C(29)-H(29)	0.91(3)
P(3)-C(39)	1.813(2)	C(30)-H(30)	0.93(3)	C(36)-C(35)	1.375(4)
P(4)-O(4)	1.489(2)	C(25)-C(24)	1.383(3)	C(36)-H(36)	0.97(3)
P(4)-C(40)	1.803(2)	C(25)-H(25)	0.93(2)	C(50)-H(50)	0.94(3)
P(4)-C(46)	1.816(2)	C(12)-C(11)	1.383(3)	C(15)-C(16)	1.381(4)
P(4)-C(52)	1.817(2)	C(12)-H(12)	0.92(2)	C(15)-H(15)	1.00(3)
F(2)-C(26)	1.393(2)	C(21)-C(22)	1.390(3)	C(28)-H(28)	0.94(3)
F(4)-C(52)	1.383(3)	C(21)-H(21)	0.91(3)	C(35)-H(35)	0.93(3)
F(1)-C(13)	1.398(2)	C(19)-C(18)	1.393(3)	C(44)-H(44)	0.96(3)
F(3)-C(39)	1.390(2)	C(19)-H(19)	0.94(3)	C(16)-C(17)	1.367(4)
C(1)-C(6)	1.389(3)	C(24)-C(23)	1.385(4)	C(16)-H(16)	0.93(3)
C(1)-C(2)	1.393(3)	C(24)-H(24)	0.93(3)	C(17)-C(18)	1.380(4)
C(26)-H(26A)	0.99(2)	C(32)-H(32)	0.95(2)	C(17)-H(17)	0.96(3)
C(26)-H(26B)	0.99(2)	C(37)-C(36)	1.385(4)	C(18)-H(18)	0.95(3)
C(39)-H(39A)	1.01(2)	C(37)-H(37)	0.88(3)	O(1)-P(1)-C(7)	112.2(2)
C(39)-H(39B)	1.01(2)	C(41)-C(42)	1.388(3)	O(1)-P(1)-C(1)	113.2(2)
C(40)-C(41)	1.388(3)	C(41)-H(41)	0.93(3)	C(7)-P(1)-C(1)	108.3(2)

Table S14: Bond lengths [Å] and angles [°] of compound **6**.

C(40)-C(45)	1.392(3)	C(10)-C(11)	1.387(4)	O(1)-P(1)-C(13)	113.3(2)
C(20)-C(25)	1.392(3)	C(10)-H(10)	0.91(3)	C(7)-P(1)-C(13)	102.7(2)
C(20)-C(21)	1.398(3)	C(11)-H(11)	0.91(3)	C(1)-P(1)-C(13)	106.5(2)
C(9)-C(10)	1.384(3)	C(49)-C(48)	1.377(4)	O(2)-P(2)-C(20)	112.3(2)
C(9)-C(8)	1.397(3)	C(49)-C(50)	1.381(4)	O(2)-P(2)-C(14)	113.5(2)
C(9)-H(9)	0.95(3)	C(49)-H(49)	0.95(3)	C(20)-P(2)-C(14)	107.7(2)
C(46)-C(51)	1.387(3)	C(8)-H(8)	0.93(2)	O(2)-P(2)-C(26)	113.5(2)
C(46)-C(47)	1.391(3)	C(4)-C(5)	1.372(4)	C(20)-P(2)-C(26)	102.4(2)
C(14)-C(15)	1.385(3)	C(4)-C(3)	1.375(4)	C(14)-P(2)-C(26)	106.7(2)
C(14)-C(19)	1.387(3)	C(4)-H(4)	0.96(3)	O(3)-P(3)-C(33)	111.9(2)
C(27)-C(28)	1.393(3)	C(3)-C(2)	1.384(4)	O(3)-P(3)-C(27)	111.4(2)
C(27)-C(32)	1.395(3)	C(3)-H(3)	0.92(3)	C(33)-P(3)-C(27)	110.2(2)
C(13)-H(13A)	0.99(2)	C(23)-C(22)	1.387(4)	O(3)-P(3)-C(39)	113.9(2)
C(13)-H(13B)	0.98(2)	C(23)-H(23)	0.91(3)	C(33)-P(3)-C(39)	106.3(2)
C(7)-C(12)	1.391(3)	C(2)-H(2)	0.97(3)	C(27)-P(3)-C(39)	102.7(2)
C(7)-C(8)	1.395(3)	C(5)-H(5)	0.96(3)	O(4)-P(4)-C(40)	112.7(2)
C(38)-C(37)	1.394(3)	C(43)-C(44)	1.383(4)	O(4)-P(4)-C(46)	110.8(2)
C(38)-C(33)	1.396(3)	C(43)-C(42)	1.392(4)	C(40)-P(4)-C(46)	109.9(2)
C(38)-H(38)	0.93(2)	C(43)-H(43)	0.89(3)	O(4)-P(4)-C(52)	113.9(2)
C(40)-P(4)-C(52)	102.19(11)	C(7)-C(8)-C(9)	119.9(2)	C(12)-C(7)-P(1)	122.9(2)
C(46)-P(4)-C(52)	106.82(11)	C(5)-C(4)-C(3)	120.0(3)	C(8)-C(7)-P(1)	117.5(2)
C(6)-C(1)-C(2)	119.3(2)	C(4)-C(3)-C(2)	119.9(3)	C(37)-C(38)-C(33)	120.1(3)
C(6)-C(1)-P(1)	124.2(2)	C(24)-C(23)-C(22)	120.2(2)	C(34)-C(33)-C(38)	119.2(2)
C(2)-C(1)-P(1)	116.5(2)	C(3)-C(2)-C(1)	120.4(3)	C(34)-C(33)-P(3)	124.2(2)
F(2)-C(26)-P(2)	109.9(2)	C(4)-C(5)-C(6)	120.9(3)	C(38)-C(33)-P(3)	116.6(2)
F(3)-C(39)-P(3)	109.1(2)	C(44)-C(43)-C(42)	119.8(3)	C(44)-C(45)-C(40)	120.3(3)
C(41)-C(40)-C(45)	119.5(2)	C(49)-C(48)-C(47)	120.0(3)	F(4)-C(52)-P(4)	109.2(2)
C(41)-C(40)-P(4)	123.9(2)	C(49)-C(48)-H(48)	121(2)	C(1)-C(6)-C(5)	119.3(3)
C(45)-C(40)-P(4)	116.5(2)	C(47)-C(48)-H(48)	118(2)	C(30)-C(31)-C(32)	120.1(3)
C(25)-C(20)-C(21)	119.9(2)	C(48)-C(47)-C(46)	120.7(3)	C(31)-C(30)-C(29)	120.0(2)
C(25)-C(20)-P(2)	122.5(2)	C(23)-C(22)-C(21)	119.8(3)	C(24)-C(25)-C(20)	119.7(2)
C(21)-C(20)-P(2)	117.6(2)	C(46)-C(51)-C(50)	120.3(3)	C(11)-C(12)-C(7)	120.3(2)
C(10)-C(9)-C(8)	119.9(2)	C(35)-C(34)-C(33)	120.1(3)	C(22)-C(21)-C(20)	119.9(2)
C(51)-C(46)-C(47)	118.8(2)	C(41)-C(42)-C(43)	120.2(3)	C(14)-C(19)-C(18)	120.1(3)
C(51)-C(46)-P(4)	117.0(2)	C(30)-C(29)-C(28)	120.4(3)	C(25)-C(24)-C(23)	120.5(3)
C(47)-C(46)-P(4)	124.1(2)	C(35)-C(36)-C(37)	120.1(3)	C(31)-C(32)-C(27)	120.2(2)
C(15)-C(14)-C(19)	119.2(2)	C(49)-C(50)-C(51)	120.2(3)	C(36)-C(37)-C(38)	120.0(3)
C(15)-C(14)-P(2)	117.6(2)	C(16)-C(15)-C(14)	120.2(3)	C(42)-C(41)-C(40)	120.1(3)
C(19)-C(14)-P(2)	123.2(2)	C(29)-C(28)-C(27)	120.0(2)	C(9)-C(10)-C(11)	120.2(2)
C(28)-C(27)-C(32)	119.3(2)	C(36)-C(35)-C(34)	120.5(3)	C(12)-C(11)-C(10)	120.2(2)
C(28)-C(27)-P(3)	124.2(2)	C(43)-C(44)-C(45)	120.0(3)	C(48)-C(49)-C(50)	120.0(3)
C(32)-C(27)-P(3)	116.6(2)	C(17)-C(16)-C(15)	120.7(3)	C(17)-C(18)-C(19)	119.9(3)
F(1)-C(13)-P(1)	109.2(2)	C(16)-C(17)-C(18)	120.0(3)	C(12)-C(7)-C(8)	119.6(2)

Table S15: Torsion angles [°] of product of **6**.

O(1)-P(1)-C(1)-C(6)	132.0(2)	P(2)-C(20)-C(25)-C(24)	179.8(2)
C(7)-P(1)-C(1)-C(6)	-103.0(2)	C(8)-C(7)-C(12)-C(11)	0.7(4)

C(13)-P(1)-C(1)-C(6)	6.9(2)	P(1)-C(7)-C(12)-C(11)	-178.9(2)
O(1)-P(1)-C(1)-C(2)	-46.5(2)	C(25)-C(20)-C(21)-C(22)	-0.7(4)
C(7)-P(1)-C(1)-C(2)	78.5(2)	P(2)-C(20)-C(21)-C(22)	179.9(2)
C(13)-P(1)-C(1)-C(2)	-171.7(2)	C(15)-C(14)-C(19)-C(18)	1.9(4)
O(2)-P(2)-C(26)-F(2)	-58.0(2)	P(2)-C(14)-C(19)-C(18)	-176.8(2)
C(20)-P(2)-C(26)-F(2)	-179.3(2)	C(20)-C(25)-C(24)-C(23)	0.5(4)
C(14)-P(2)-C(26)-F(2)	67.7(2)	C(30)-C(31)-C(32)-C(27)	-0.3(4)
O(3)-P(3)-C(39)-F(3)	-61.0(2)	C(28)-C(27)-C(32)-C(31)	-0.8(4)
C(33)-P(3)-C(39)-F(3)	62.7(2)	P(3)-C(27)-C(32)-C(31)	179.5(2)
C(27)-P(3)-C(39)-F(3)	178.5(2)	C(33)-C(38)-C(37)-C(36)	-0.4(4)
O(4)-P(4)-C(40)-C(41)	170.9(2)	C(45)-C(40)-C(41)-C(42)	-2.0(4)
C(46)-P(4)-C(40)-C(41)	-64.9(2)	P(4)-C(40)-C(41)-C(42)	-179.9(2)
C(52)-P(4)-C(40)-C(41)	48.2(2)	C(8)-C(9)-C(10)-C(11)	1.5(4)
O(4)-P(4)-C(40)-C(45)	-7.1(2)	C(7)-C(12)-C(11)-C(10)	0.3(4)
C(46)-P(4)-C(40)-C(45)	117.1(2)	C(9)-C(10)-C(11)-C(12)	-1.5(4)
C(52)-P(4)-C(40)-C(45)	-129.8(2)	C(12)-C(7)-C(8)-C(9)	-0.6(4)
O(2)-P(2)-C(20)-C(25)	173.5(2)	P(1)-C(7)-C(8)-C(9)	179.0(2)
C(14)-P(2)-C(20)-C(25)	47.9(2)	C(10)-C(9)-C(8)-C(7)	-0.5(4)
C(26)-P(2)-C(20)-C(25)	-64.4(2)	C(5)-C(4)-C(3)-C(2)	0.6(4)
O(2)-P(2)-C(20)-C(21)	-7.1(2)	C(25)-C(24)-C(23)-C(22)	-1.4(4)
C(14)-P(2)-C(20)-C(21)	-132.8(2)	C(4)-C(3)-C(2)-C(1)	0.2(4)
C(26)-P(2)-C(20)-C(21)	115.0(2)	C(6)-C(1)-C(2)-C(3)	-1.5(4)
O(4)-P(4)-C(46)-C(51)	-13.2(2)	P(1)-C(1)-C(2)-C(3)	177.1(2)
C(40)-P(4)-C(46)-C(51)	-138.5(2)	C(3)-C(4)-C(5)-C(6)	-0.2(4)
C(52)-P(4)-C(46)-C(51)	111.4(2)	C(1)-C(6)-C(5)-C(4)	-1.1(4)
O(4)-P(4)-C(46)-C(47)	166.3(2)	C(50)-C(49)-C(48)-C(47)	-0.6(4)
C(40)-P(4)-C(46)-C(47)	41.1(2)	C(49)-C(48)-C(47)-C(46)	-0.2(4)
C(52)-P(4)-C(46)-C(47)	-69.0(2)	C(51)-C(46)-C(47)-C(48)	0.8(4)
O(2)-P(2)-C(14)-C(15)	-58.7(2)	P(4)-C(46)-C(47)-C(48)	-178.7(2)
C(20)-P(2)-C(14)-C(15)	66.2(2)	C(24)-C(23)-C(22)-C(21)	1.2(4)
C(26)-P(2)-C(14)-C(15)	175.5(2)	C(20)-C(21)-C(22)-C(23)	-0.2(4)
O(2)-P(2)-C(14)-C(19)	120.0(2)	C(47)-C(46)-C(51)-C(50)	-0.7(4)
C(20)-P(2)-C(14)-C(19)	-115.1(2)	P(4)-C(46)-C(51)-C(50)	178.9(2)
C(26)-P(2)-C(14)-C(19)	-5.8(2)	C(38)-C(33)-C(34)-C(35)	-2.6(4)
O(3)-P(3)-C(27)-C(28)	156.6(2)	P(3)-C(33)-C(34)-C(35)	179.5(2)
C(33)-P(3)-C(27)-C(28)	31.8(2)	C(40)-C(41)-C(42)-C(43)	0.5(4)
C(39)-P(3)-C(27)-C(28)	-81.1(2)	C(44)-C(43)-C(42)-C(41)	1.4(4)
O(3)-P(3)-C(27)-C(32)	-23.7(2)	C(31)-C(30)-C(29)-C(28)	-0.6(4)
C(33)-P(3)-C(27)-C(32)	-148.5(2)	C(38)-C(37)-C(36)-C(35)	-0.3(4)
C(39)-P(3)-C(27)-C(32)	98.6(2)	C(48)-C(49)-C(50)-C(51)	0.8(4)
O(1)-P(1)-C(13)-F(1)	-59.7(2)	C(46)-C(51)-C(50)-C(49)	-0.1(4)
C(7)-P(1)-C(13)-F(1)	179.1(2)	C(19)-C(14)-C(15)-C(16)	-0.7(4)
C(1)-P(1)-C(13)-F(1)	65.4(2)	P(2)-C(14)-C(15)-C(16)	178.1(2)
O(1)-P(1)-C(7)-C(12)	160.6(2)	C(30)-C(29)-C(28)-C(27)	-0.4(4)
C(1)-P(1)-C(7)-C(12)	35.0(2)	C(32)-C(27)-C(28)-C(29)	1.1(4)
C(13)-P(1)-C(7)-C(12)	-77.4(2)	P(3)-C(27)-C(28)-C(29)	-179.2(2)
O(1)-P(1)-C(7)-C(8)	-19.1(2)	C(37)-C(36)-C(35)-C(34)	-0.5(4)

C(1)-P(1)-C(7)-C(8)	-144.7(2)	C(33)-C(34)-C(35)-C(36)	1.9(4)
C(13)-P(1)-C(7)-C(8)	103.0(2)	C(42)-C(43)-C(44)-C(45)	-1.9(4)
C(37)-C(38)-C(33)-C(34)	1.8(4)	C(40)-C(45)-C(44)-C(43)	0.4(4)
C(37)-C(38)-C(33)-P(3)	179.9(2)	C(14)-C(15)-C(16)-C(17)	-0.8(5)
O(3)-P(3)-C(33)-C(34)	165.5(2)	C(15)-C(16)-C(17)-C(18)	1.0(5)
C(27)-P(3)-C(33)-C(34)	-70.0(2)	C(16)-C(17)-C(18)-C(19)	0.3(4)
C(39)-P(3)-C(33)-C(34)	40.6(2)	C(14)-C(19)-C(18)-C(17)	-1.7(4)
O(3)-P(3)-C(33)-C(38)	-12.5(2)	C(40)-P(4)-C(52)-F(4)	-180.0(2)
C(27)-P(3)-C(33)-C(38)	112.0(2)	C(46)-P(4)-C(52)-F(4)	-64.5(2)
C(39)-P(3)-C(33)-C(38)	-137.4(2)	C(2)-C(1)-C(6)-C(5)	1.9(4)
C(41)-C(40)-C(45)-C(44)	1.5(4)	P(1)-C(1)-C(6)-C(5)	-176.6(2)
P(4)-C(40)-C(45)-C(44)	179.6(2)	C(32)-C(31)-C(30)-C(29)	1.0(4)
O(4)-P(4)-C(52)-F(4)	58.2(2)	C(21)-C(20)-C(25)-C(24)	0.5(3)

3 IR Spectra

3.1 Compound 1

3.2 Compound 2

Figure S43: IR Spectra of compound 2

3.3 Compound 3

Figure S44: IR Spectra of compound 3

3.4 Compound 4

Figure S45: IR Spectra of compound 4

Figure S46: IR Spectra of compound 5

3.6 Compound 6a

Figure S47: IR Spectra of compound 6a

Figure S48: IR TEP 6a

4 Raman Spectra

4.1 Compound 1

Figure S49: Raman Spectra of compound 1

4.2 Compound 2

Figure S50: Raman Spectra of compound 2

4.3 Compound 3 Figure S51: Raman Spectra of compound **3**

4.4 Compound 4

Figure S52: Raman Spectra of compound 4

4.5 Compound 5 Figure S53: Raman Spectra of compound **5**

4.6 Compound 6a

Figure S54: Raman Spectra of compound 6a

5 Mass Spectrometry

5.1 Compound 1

Figure S55: Mass Spectra of compound 1

Composition View
Edit
Spectrum #1 *1.00 7338934 100 100 100 100 100 100 100 10
50-
89.1 137.1 154.1 195.1 154.1 175.1 156.2 175.1 195.1 156.2 195.1 195.1 156.2 195.1 196.1 196.
Max Error (mmu) \equiv 100Hax U.S. \equiv 40.0ElementHax.Min. Isotope1Hin Error (mmu) \equiv 100Hin U.S. \equiv -1.0F11
defect (ppm) \equiv 100 Prg-CHK Off \equiv P 1 1 1
STD Error (nmu) = 100 STD-CHK On m Calculate Filter Cancel
Format Composition Formula Type in Print
Elements : C 4/4, H 11/11, F 1/1, P 1/1 ////////////////////////////
136.0424* 12.5 137.0530 13.4 154.0540 14.9

5.2 Compound 2

Figure S56: Mass Spectra of compound 2

- Composition View	
Edit	Help
Spectrum #4 *1.00	
3149163 280.2	
50-195.1 239.1	
219.1 278.2 310.2	327.2 359.3 371.2
0 - partie - man - from - parties -	Anno the states
	330 340 350 360 370 360
$\operatorname{Max \ Error \ (mmu)} \equiv 100 \qquad \operatorname{Max \ U.S.} \equiv 50.0 \qquad c$	13 13 1
$\operatorname{Hin}\operatorname{Error}(\operatorname{mau}) \equiv 0 \qquad \operatorname{Hin}\operatorname{U.s.} \equiv -5, 0 \qquad \operatorname{H}_{\operatorname{N}}$	32 32 1
	1 1 1
defect (ppm) $\equiv 20$ Frg-CHK 011 Frg-P	1 1 1
STD Error (mmu) = 20 STD-CHK Off	
Calculate Filter Cancel Rdit	Accent Delete Cancel
Format Composition Formula Type in	Print
Elements : C 13/13, H 32/32, N 3/3, F 1/1, P	1/1
Mass Tolerance : 20ppm, 100mmu 1r m/2 > 5000 Unsaturation : -5.0 ~ 50.0	
No. m/z Int% Err-mmu U.S. Composition	
281.2314 21.6	
1 280.2316 100.0 -0.2 0.5 CI3H32N3FP	
<u>1</u>	E State

5.3 Compound 3

Figure S57: Mass Spectra of compound 3

Composition View	
Edit	lp
Spectrum #1 *1.00	
7338406 235.2 100 1	
50-	
132.1	
151.1 233.2 283.2	e
al 150.1 1 281.1 281.1 281.1 1	-
140 150 160 170 180 190 200 210 220 230 240 250 260 270 280	290
$\operatorname{Hax} \operatorname{Error} (\operatorname{Hmu}) \equiv 100 \qquad \operatorname{Hax} \operatorname{U.s.} \equiv 50, 0 \qquad \operatorname{Element} \operatorname{Hax} \cdot \operatorname{Hin.} \operatorname{1sotop} c \qquad 13 \qquad 13 \qquad 1$	
Hin Error (mmu) = 100 Hin U.S. = -5.0 H 29 29 1	
p = 1 = 1	
STD Error (mmu) = 20 STD-CHK STD-CHK	
Calculate Filter Cancel Edit Accept Delete Can	cel
Format Composition Formula Print	
Elements : C 13/13, H 29/29, F 1/1, P 1/1	۲¢
Mass Tolerance : 100mmu	
No. m/z Int% Err-mmu U.S. Composition	
233 1839 15.3	
236.1991 47.5	

5.4 Compound 4

Figure S58: Mass Spectra of compound 4

5.5 Compound 5

Figure S59: Mass Spectra of compound 5

5.6 Compound 6a

Figure S60: Mass Spectra of compound 6a

