Supporting Information:

Synthesis of mono/binuclear rhenium(I) tricarbonyl substituted with 4mercaptopyridine related ligands: Spectral and theoretical evidence of thiolate/thione interconversion.

Alejandra Gómez, ${ }^{\text {a* }}$ Geraldine Jara, ${ }^{\text {a Erick Flores, }}{ }^{\text {a }}$ Tamara Maldonado, ${ }^{a}$ Fernando

Figure S1. a) Infrared spectra measured in $\mathrm{CH}_{3} \mathrm{CN}$ for monometallic 1-2 and bimetallic 3-4 complexes. b) IR spectra calculated for Re-spy (1) and Re-thiopy (2) in gas phase ($v_{\mathrm{M}-\mathrm{co}}: 2200-2000 \mathrm{~cm}^{-1}$). The frequencies for the estimation of IR absorptions were derived from Hessian matrices, obtained numerically for both systems (1 and 2) in gas phase at the GFN-xTB level of theory, on geometries previously optimized at the same level.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of (a) $\mathbf{1}$ and (b) $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{d}_{3}$ (400 MHz).

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CHCl}_{3}-\mathrm{d}_{1}(400 \mathrm{MHz})$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of (a) $\mathbf{3}$ and (b) $\mathbf{4}$ in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{d}_{3}(400 \mathrm{MHz})$.

Figure S5. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of (a) $\mathbf{3}$ and (b) $\mathbf{4}$ in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{d}_{3}$ (400 MHz).

Table S1. Crystal data and structure refinement for $\left[(C O)_{3}(b p y) \operatorname{Re}\left(\mu-\mathbf{N}, \mathbf{N}^{\prime}-\right.\right.$ $\left.\left.\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{~N}\right) \mathrm{Re}(\mathrm{bpy})(\mathrm{CO})_{3}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ [+solvent].

FW/uma	1339.23
Crystal System	Triclinic
Space Group	$P \overline{1}$
a (A)	10.865(4)
b (A)	14.038(5)
c (${ }^{\text {a }}$)	16.021(6)
$\alpha\left({ }^{\circ}\right)$	82.680(6)
$\beta\left({ }^{\circ}\right)$	72.674(6)
$\gamma\left({ }^{\circ}\right)$	89.860(7)
V (${ }^{\text {a }}$)	2312.0(14)
Z	2
$\mathrm{d}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.924
$\mu\left(\mathrm{mm}^{-1}\right)$	5.46
F000	1326
θ range	2.0 to 26.0°
hkl range	$-13 \leq h \leq 13$
	$-17 \leq k \leq 17$
	$-19 \leq 1 \leq 19$
$\mathrm{N}_{\text {tot }}, \mathrm{N}_{\text {uniq }}\left(\mathrm{R}_{\text {int }}\right), \mathrm{N}_{\text {obs }}$	18110, 9075, 0.036, 7515
Refinement Parameters	676
GOF	1.02
R1, wR2 (obs)	0.038, 0.103
R1, wR2 (all)	

Table S2. Selected bond and interatomic distances and angles for $\left[(C O)_{3}(b p y) R e\left(\mu-N, N^{\prime}-\right.\right.$ $\left.\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{~N}\right) \mathrm{Re}($ bpy $\left.)(\mathrm{CO})_{3}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ [+solvent].

Re1-C32	1.919(7)	Re2-C36	1.921(7)
Re1-C31	1.923(7)	$\mathrm{Re} 2-\mathrm{C} 35$	1.925(7)
Re1-C33	1.925(7)	$\mathrm{Re} 2-\mathrm{C} 34$	1.921(7)
Re1-N1	2.190 (5)	$\mathrm{Re} 2-\mathrm{N} 4$	$2.166(5)$
Re1-N2	$2.188(5)$	$\mathrm{Re} 2-\mathrm{N} 3$	2.183(5)
Re1-N5	2.208(5)	Re2-N6	2.205(5)
Re1 \cdots Re2	11.334(3)		
C32-Re1-C31	85.3(3)	C36-Re2-C35	86.7(3)
C32-Re1-C33	87.6(3)	C36-Re2-C34	87.6(3)
C31-Re1-C33	89.3(3)	C35-Re2-C34	89.7(3)
C32-Re1-N1	101.8(2)	C36-Re2-N4	173.6(3)
C31-Re1-N1	172.5(2)	C35-Re2-N4	99.5(3)
C33-Re1-N1	93.3(3)	C34-Re2-N4	93.9(3)
C32-Re1-N2	176.2(2)	$\mathrm{C} 36-\mathrm{Re} 2-\mathrm{N} 3$	98.9(3)
C31-Re1-N2	98.2(2)	C35-Re2-N3	174.1(2)
C33-Re1-N2	90.9(3)	$\mathrm{C} 34-\mathrm{Re} 2-\mathrm{N} 3$	92.1(2)
N1-Re1-N2	74.8(2)	$\mathrm{N} 4-\mathrm{Re} 2-\mathrm{N} 3$	74.8(2)
C32-Re1-N5	93.4(2)	C36-Re2-N6	93.3(2)
C31-Re1-N5	91.1(3)	C35-Re2-N6	92.6(2)
C33-Re1-N5	178.9(3)	C34-Re2-N6	177.6(2)
N1-Re1-N5	86.15(19)	$\mathrm{N} 4-\mathrm{Re} 2-\mathrm{N} 6$	84.95(18)
N2-Re1-N5	88.01(18)	N3-Re2-N6	85.54(18)
C23-S1-C28	103.3(3)		

Figure S6. UV-Vis spectrum of (a) $\mathbf{1}$ and (b) $\mathbf{2}$ measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{OH}$.

Figure S7. UV-Vis spectrum of (a) $\mathbf{3}$ and (b) $\mathbf{4}$ measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{OH}$.

Figure S8. Electronic absorption (black trace) and emission (red trace) of (a) $\mathbf{1}$ and (b) $\mathbf{2}$ ($\lambda_{\text {exc }}: 435 \mathrm{~nm}$) measured in aerated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S9. Electronic absorption (black trace) and emission (red trace) of (a) $\mathbf{3}$ and (b) 4 ($\lambda_{\text {exc }}: 425 \mathrm{~nm}$) measured in aerated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature.

Quantum yields (Φ_{F}) were determined using the follow expression:

$$
\Phi_{x}=\Phi_{s t}\left(\frac{\operatorname{Grad}_{x}}{\operatorname{Grad}_{s t}}\right)\left(\frac{\eta_{x}^{2}}{\eta_{s t}^{2}}\right)
$$

Where:
Φ_{x} : Quantum yield of the sample.
Φ_{st} : Quantum yield of the standard.
η_{x} : Refraction index of the solvent used for measuring the sample.
$\eta_{s t}$ Refraction index of the solvent used for measuring the standard.
Grad $_{x} ;$ Grad $_{s t}$: Slopes obtained in of the plot of integrated fluorescence intensity versus the absorbance at the excitation wavelength of the standard and the sample, respectively.

Figure S10. UV-Vis spectrum of 1 measured in different solvents as $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{OH}$, EtOH and respective addition of water.

Figure S11. UV-Vis spectrum of $\mathbf{2}$ measured in different solvents as $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{EtOH}$ and respective addition of water.

Figure S12. UV-Vis spectrum of 1 measured in EtOH after the addition of acids such as $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}$, $\mathrm{HSO}_{3} \mathrm{CF}_{3}$.

Theoretical calculations. Solvated structures. The optimized structure for $\mathbf{1}$ was placed at the center of a sphere containing 130 methanol molecules by using Packmol [1]. One water molecule was placed close to the solute to mimic the experimental conditions. A 6 ps full quantum-chemical, with the GFN2-xTB semiempirical method[2], Langevin molecular dynamics simulation in spherical-boundary conditions at 298 K, was performed on the system, after a 300-steps equilibration. The system was then subject to 2610 optimization steps at the same level. Both the MD and the optimization calculations employed a generalized Born-based continuum model solvent with the methanol parameters included in the program. All semiempirical calculations were performed with the xtb program v6.2 (https://github.com/grimme$\mathrm{lab} / \mathrm{xtb}$), while the molecular dynamic and optimization steps were guided by the pDynamo libraries v1.9.0[3]. The solute and two solvent molecules, judged important for the studied effect, were separated from the final structure and employed for UV-vis spectra calculation without further optimization, in order to avoid disrupting the solvated geometry.

Figure S13. Visualization of the full system: Re-spy with a sphere of 130 methanol molecules, and one water molecule.

Figure S14. Re-spy (1)..MeOH.. $\mathrm{H}_{2} \mathrm{O}$ a) Structure of solvated geometry. b) Simulated electronic spectra for optimized geometry after and electronic density difference analysis surfaces.

Figure S15. ADC(2) ab-initio level calculations for a) Re-spy (1) and b) Re-thiopy (2).

Table S3. Summary of Electrochemical Data for the redox behavior of rhenium(I) tricarbonyl complexes

Complex	$\mathrm{E}_{1 / 2}$	$\mathrm{E}_{\mathrm{pc}}(\mathrm{I})$	$\mathrm{E}_{\mathrm{pa}}\left(I^{\prime}\right)$	E_{pc} (II)	$\mathrm{E}_{\mathrm{pa}}\left(1 I^{\prime}\right)$	E_{pc} (III)	$\mathrm{E}_{\mathrm{pa}}\left(\mathrm{III}^{\prime}\right)$
	(I/「) /V	/V	/v	/V	/v	/V	/V
Re-spy (1)	-1.681	-1.727	-1.635	-2.119	-1.495	--	--
Re-thiopy (2)	-1.689	-1.742	-1.636	-2.089	-1.516	--	--
Re-dps (3)	-1.533	-1.581	-1.485	-2.049	-1.636	-1.032	-0.060
Re-dpds (4)	-1.509	-1.557	-1.461	-2.060	-1.627	-1.152	0.094
$(\mathrm{bpy}) \mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}$	-1.670	-1.710	-1.620	-2.110	-1.540	--	--

Figure S16. Cyclic voltammogram of 4,4'-dipyridyldisulfide (dpds); scan rate: $0.5 \mathrm{~V} / \mathrm{s}$. (dpds) in dry $\mathrm{CH}_{3} \mathrm{CN}$.

References

[1] L. Martínez, R. Andrade, E. G. Birgin, J. M. Martínez, J. Comput. Chem. 2009, 30, 2157-2164.
[2] C. Bannwarth, S. Ehlert, S. Grimme, S., J. Chem. Theory Comput. 2019, 15, 1652-1671.
[3] M. J. Field, J. Chem. Theory Comput. 2008, 4, 1151-1161.

