Synthesis and structural characterisation of bulky heptaaromatic (hetero)-aryl o-substituted s-aryltetrazines

Clève D. Mboyi, Ahmad Daher, Neelab Khirzada, Charles H. Devillers, Hélène Cattey, Paul Fleurat-Lessard, Julien Roger and Jean-Cyrille Hierso

Table of contents

General conditions 2
General procedure for o-tetrabromination of 1 under microwave conditions 2
Synthesis of heptaaromatic o-substituted s-aryltetrazines 3-13 3
UV-Vis measurements 8
Cyclic voltammetry measurements 11
Computational Study 14
Table of inter and intra-molecular interactions 23
${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR copy of products 25

General conditions

All reagents were purchased from commercial suppliers and used without purifications. Reactions were performed in Schlenk tubes or in a microwave reaction vessel. The microwave reactions were run in closed reaction vessels with magnetic stirring and with the temperature controlled via IR detection. NMR spectra were recorded on Bruker spectrometers: Bruker Avance III 300 spectrometer (${ }^{1} \mathrm{H} 300.13 \mathrm{MHz},{ }^{19} \mathrm{~F} 282.40 \mathrm{MHz}$; ${ }^{13} \mathrm{C}$ 75.47 MHz) or Avance Neo $500 \mathrm{MHz}\left({ }^{1} \mathrm{H} 500 \mathrm{MHz},{ }^{19} \mathrm{~F} 470 \mathrm{MHz},{ }^{13} \mathrm{C} 125 \mathrm{MHz}\right.$) equipped with a 5 mm BBOF iProbe. NMR spectroscopy chemical shifts are quoted in parts per million (δ) relative to TMS (for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$) and CFCl_{3} (for ${ }^{19} \mathrm{~F}$). For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra, calibration was made by using residual signals of partially deuterated solvent. Flash chromatography was performed on silica gel (230-400 mesh). High-resolution mass spectrometry (HRMS) analyses were recorded on a LTQ XL Orbitrap (Thermo Scientific) equipped with an electrospray ionization source (HESI 2). UV-visible absorption spectra in solution were recorded with a Varian UV-vis spectrophotometer Cary 50 scan using quartz cells (Hellma).

General procedure for o-tetrabromination of 1 under microwave conditions

1

$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$
$\mathrm{AcOH}, 110{ }^{\circ} \mathrm{C}$ 45 min (microwave 200 W)

2

Scheme S-1. Bromination reactions on 3,6-diphenyl-1,2,4,5-tetrazine $\mathbf{1}$ for brominated tetrazine $\mathbf{2}$.

In a microwave reaction vessel equipped with a magnetic stirring bar, 3,6-diphenyl-1,2,4,5-tetrazine (1) (1 equiv, $0.855 \mathrm{mmol}, 0.20 \mathrm{~g}),\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right](20 \mathrm{~mol} \%)$, NBS (8 equiv, 1.22 g) and acetic acid (0.125 M) were introduced, the vessel was placed in a microwave reactor $\left(120^{\circ} \mathrm{C}, 200 \mathrm{~W}, 45 \mathrm{~min}\right)$. After cooling down to room temperature, the reaction mixture was extracted with distilled water and dichloromethane, the combined organic layers were dried over anhydrous MgSO_{4}, filtrated and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography to afford 2 as purple solid. $\mathrm{R}_{\mathrm{f}}=0.50$ (ethyl acetate/heptane $=2: 8(\mathrm{v} / \mathrm{v}))$. Yield $=89 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=7.77(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.41-7.33(\mathrm{~m}$, 2H). The analyses were identical to reported data (Angew. Chem. Int. Ed. 2016, 55, 5555 -5559).

Synthesis of heptaaromatic o-substituted s-aryltetrazines 3-13

In a dried Schlenk tube equipped with magnetic stirring bar were added the 3,6-bis(2,6-dibromophenyl)-1,2,4,5tetrazine 2 (1 equiv), (hetero)arylboronic acid (8 equiv), $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right]$ ($20 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (8 equiv). Dry toluene (typically 0.023 M) was added, and the Schlenk tube was purged three times with argon. The Schlenk tube was placed in a pre-heated oil bath at $110^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature, the reaction mixture was extracted with distilled water and dichloromethane, the combined organic layers were dried over anhydrous MgSO_{4}, filtrated, and the solvent was evaporated under reduced pressure. The products 3-13 were purified by silica gel column chromatography (eluent: heptane/dichloromethane or ethyl acetate). Crystallization for single crystal was typically achieved from volatile CHCl_{3} or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent (see ESI for XRD).

3,6-di([1,1':3',1'-terphenyl]-2'-yl)-1,2,4,5-tetrazine (3)

(2) (1 equiv, $0.273 \mathrm{mmol}, 0.150 \mathrm{~g}),\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right]$ ($20 \mathrm{~mol} \%$), phenylboronic acid (8 equiv, $2.183 \mathrm{mmol}, 0.266 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (8 equiv, $2.183 \mathrm{mmol}, 0.302 \mathrm{~g}$), toluene (0.023 M), $110{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
$R_{f}=0.46$ (ethyl acetate $/$ heptane $\left.=2: 8(v / v)\right)$. Yield $=95 \%$.

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.62(\mathrm{dd}, J=8.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, \mathrm{J}=7.7,0.7 \mathrm{~Hz}$, $4 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 12 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=166.4,143.1,140.2,130.9,130.4,130.1,129.6,128.1$, 127.1.

Elemental analysis: Calcd (\%) for $\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{~N}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O} \cdot 0.5$ toluene: C: $81.48, \mathrm{H}: 5.44, \mathrm{~N}: 9.16$. Found: C:81.83, H: 5.68, N: 9.21.

HRMS $+\mathrm{pESI}(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{H}^{+}\right]$Calcd for $\mathrm{C}_{38} \mathrm{H}_{26} \mathrm{~N}_{4}: 539.2230$. Found: $\mathrm{m} / \mathrm{z}=539.2254$.

3,6-bis(4,4"-di-tert-butyl-[1,1':3',1'-terphenyl]-2'-yl)-1,2,4,5-tetrazine (4)
(2) (1 equiv, $0.0455 \mathrm{mmol}, 0.025 \mathrm{~g}),\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right](20 \mathrm{~mol} \%)$, (4-(tert-butyl)phenyl)boronic acid (8 equiv, 0.364 $\mathrm{mmol}, 0.064 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (8 equiv, $0.364 \mathrm{mmol}, 0.050 \mathrm{~g}$), toluene (0.023 M), $110^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
$R_{f}=0.42$ (Ethyl acetate/heptane $\left.=2: 8(\mathrm{v} / \mathrm{v})\right)$. Yield $=69 \%$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.59(\mathrm{dd}, J=8.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $4 \mathrm{H}), 7.29$ ($\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 8 \mathrm{H}$), 6.91 ($\mathrm{d}, J=7.9 \mathrm{~Hz}, 8 \mathrm{H}$), 1.30 ($\mathrm{s}, 36 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=166.4,149.9,142.9,137.3,130.8,130.3,130.1$, 129.3, 125.1, 34.5, 31.4.

Elemental analysis: Calcd (\%) for $\mathrm{C}_{54} \mathrm{H}_{58} \mathrm{~N}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \cdot 0.5$ heptane: C: $84.0, \mathrm{H}: 8.21, \mathrm{~N}$: 6.81. Found: C:84.1, H: 8.39, N: 6.88.

HRMS + p ESI (m/z) [$\left.\mathrm{M}+\mathrm{H}^{+}\right]$Calcd for $\mathrm{C}_{54} \mathrm{H}_{58} \mathrm{~N}_{4}: 763,4734$. Found: $\mathrm{m} / \mathrm{z}=763,4759$.

3,6-bis(4,4'-dimethoxy-[1,1':3',1'-terphenyl]-2'-yl)-1,2,4,5-tetrazine (5)

(2) (1 equiv, $0.0455 \mathrm{mmol}, 0.025 \mathrm{~g}$), $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right](20 \mathrm{~mol} \%)$, (4-methoxyphenyl)boronic acid (8 equiv, 0.364 mmol , 0.055 g), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (8 equiv, $0.364 \mathrm{mmol}, 0.050 \mathrm{~g}$), toluene (0.023 M), $110^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
$R_{f}=0.16$ (ethyl acetate/heptane $=2: 8(\mathrm{v} / \mathrm{v})$). Yield $=80 \%$.

$R f=0.32$ (dichloromethane/heptane $=1 / 1(\mathrm{v} / \mathrm{v})$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=7.58(\mathrm{dd}, \mathrm{J}=8.1,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=7.7$
$\mathrm{Hz}, 4 \mathrm{H})$, 6.94-6.88 (m, 8H), 6.75-6.69 (m, 8H), 3.76 (s, 12H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=166.6,158.7,142.7,132.6,131.0,130.8,130.4$, 129.8, 113.6, 55.2.

Elemental analysis: Calcd (\%) for $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 1 \cdot 5 \mathrm{H}_{2} \mathrm{O} \cdot 0.6$ toluene $\cdot 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{C}: 68.63$, H: 5.34, N: 6.78. Found: C:68.91, H: 5.72, N: 6.79

HRMS + p ESI (m/z) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$Calcd for $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4}: 659,2652$. Found: $\mathrm{m} / \mathrm{z}=659,2655$.

3,6-bis(4,4'-difluoro-[1,1':3',1'-terphenyl]-2'-yl)-1,2,4,5-tetrazine (6)

(2) (1 equiv, $0.0455 \mathrm{mmol}, 0.025 \mathrm{~g}$), $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right]$ ($20 \mathrm{~mol} \%$), (4-fluorophenyl)boronic acid (8 equiv, 0.364 mmol , 0.051 g), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (8 equiv, $0.364 \mathrm{mmol}, 0.050 \mathrm{~g}$), toluene (0.023 M), $110^{\circ} \mathrm{C}, 16 \mathrm{~h}$. $R_{f}=0.46$ (ethyl acetate/heptane $\left.=2: 8(v / v)\right)$. Yield $=93 \%$.


```
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.61(\mathrm{dd}, J=8.3,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 4 \mathrm{H})\), 7.03-6.92 (m, 8H), 6.89-6.78 (m, 8H)
\({ }^{19} \mathrm{~F}\) NMR \(\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-114.5\)
\({ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=165.3,162.5(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 141.0,134.8,134.7\), \(130.2(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 129.3,128.9,114.0(\mathrm{~d}, J=21.7 \mathrm{~Hz})\)
Elemental analysis: Calcd (\%) for \(\mathrm{C}_{38} \mathrm{H}_{22} \mathrm{~F}_{4} \mathrm{~N}_{4} \cdot 0.6 \mathrm{H}_{2} \mathrm{O} \cdot 0.4\) heptane: \(\mathrm{C}: 74.08, \mathrm{H}: 4.51, \mathrm{~N}\) : 8.47. Found: \(\mathrm{C}: 73.68, \mathrm{H}: 4.83, \mathrm{~N}: 8.87\).
HRMS + p ESI (m/z) [M+H+] Calcd for \(\mathrm{C}_{38} \mathrm{H}_{23} \mathrm{~F}_{4} \mathrm{~N}_{4}: 611.1853\). Found: 611.1853.
```


3,6-bis(4,4'-dibromo-[1,1':3',1"-terphenyl]-2'-yl)-1,2,4,5-tetrazine (7)

(2) (1 equiv, $0.109 \mathrm{mmol}, 0.060 \mathrm{~g}$), $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right]$ ($20 \mathrm{~mol} \%$), (4-bromophenyl)boronic acid (8 equiv, 0.879 mmol , $0.177 \mathrm{~g}), \mathrm{K}_{2} \mathrm{CO}_{3}(8$ equiv, $0.879 \mathrm{mmol}, 0.121 \mathrm{~g})$, toluene (0.04 M), $110{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
$R_{f}=0.52$ (Ethyl acetate/heptane $\left.=2: 8(v / v)\right)$. Yield $=55 \%$.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=7.63(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.34-$ $7.28(\mathrm{~m}, 8 \mathrm{H})$, 6.92-6.86 (m, 8H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=166.6,142.4,138.9,131.6,131.5,131.1,130.9,130.3$, 122.1.

Elemental analysis: Calcd (\%) for $\mathrm{C}_{38} \mathrm{H}_{22} \mathrm{Br}_{4} \mathrm{~N}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$: C: 52.33, H: 2.77, $\mathrm{N}: 6.42$. Found: C:52.56, H: 2.77, N: 6.23.

HRMS + p ESI (m / z) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$Calcd for $\mathrm{C}_{38} \mathrm{H}_{23} \mathrm{Br}_{4} \mathrm{~N}_{4}: 850.8650$. Found: 850.8663 .

3,6-bis(4,4'-trifluoromethyl-[1,1':3',1'-terphenyl]-2'-yl)-1,2,4,5-tetrazine (8)

(2) (1 equiv, $0.046 \mathrm{mmol}, 0.025 \mathrm{~g}),\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right]$ ($20 \mathrm{~mol} \%$), (4-trifluoromethyl)phenylboronic acid (8 equiv, 0.879 $\mathrm{mmol}, 0.069 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (8 equiv, $0.368 \mathrm{mmol}, 0.05 \mathrm{~g}$), toluene (0.023 M), $130^{\circ} \mathrm{C}, 16 \mathrm{~h}$. $R_{f}=0.48$ (ethyl acetate/heptane $=2: 8(\mathrm{v} / \mathrm{v})$). Yield $=84 \%$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.43-7.37$ ($\mathrm{m}, 8 \mathrm{H}$) , $7.12(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 8 \mathrm{H})$.
${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=-62.6$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=164.9,142.3,140.8,129.7,129.6,129.3,128.9$, 128.7 ($q, J=32.7 \mathrm{~Hz}$), $126.1(q, J=4.0 \mathrm{~Hz}), 124.0(q, J=272.1 \mathrm{~Hz})$.

Elemental analysis: Calcd (\%) for $\mathrm{C}_{42} \mathrm{H}_{22} \mathrm{~F}_{12} \mathrm{~N}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 0.2$ heptane: $\mathrm{C}: 60.14, \mathrm{H}: 3.4, \mathrm{~N}: 6.46$.
Found: C:60.01, H: 3.65, N: 6.41.
HRMS +p ESI $(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{H}^{+}\right]$Calcd for $\mathrm{C}_{42} \mathrm{H}_{23} \mathrm{~F}_{12} \mathrm{~N}_{4}$: 811.1725. Found: $\mathrm{m} / \mathrm{z}=811.1752$.

3,6-bis(4,4'-acetyl-[1,1':3',1'-terphenyl]-2'-yl)-1,2,4,5-tetrazine (9)

(2) (1 equiv, $0.046 \mathrm{mmol}, 0.025 \mathrm{~g}$), $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right]$ ($20 \mathrm{~mol} \%$), (4-acethyl)phenylboronic acid (8 equiv, 0.879 mmol , 0.06 g), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(8\right.$ equiv, $0.368 \mathrm{mmol}, 0.05 \mathrm{~g}$), toluene (0.023 M), $130^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
$R_{f}=0.10$ (ethyl acetate/heptane $=4: 6(\mathrm{v} / \mathrm{v})$). Yield $=37 \%$.

	$\begin{aligned} & { }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 8 \mathrm{H}), 7.68(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), \\ & 7.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 8 \mathrm{H}), 2.63(\mathrm{~s}, 12 \mathrm{H}) . \end{aligned}$
	$\begin{aligned} & { }^{13} \mathrm{C} \text { NMR }\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=197.5,166.1,144.6,142.2,135.9130 .8,130.5, \\ & 130.3,129.8,128.2,26.7 . \end{aligned}$
	Elemental analysis: Calcd (\%) for $\mathrm{C}_{66} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \cdot 0.55 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.15 \mathrm{C}_{38} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}$:
	$\mathrm{C}: 72.75, \mathrm{H}: 4.69, \mathrm{~N}: 7.47$. Found: $\mathrm{C}: 72.65, \mathrm{H}: 4.96, \mathrm{~N}: 7.86$. , where $\mathrm{C}_{38} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Br}$ is
	the $\quad 3$-((4'-acetyl)-3-bromo-[1,1'-biphenyl]-2'-yl))-6-(4,4'-acetyl-[1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$ -
	terphenyl]-2'-yl)-1,2,4,5-tetrazine.
	HRMS + p ESI (m / z) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$Calcd for $\mathrm{C}_{46} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4}: 708.2731$. Found: $\mathrm{m} / \mathrm{z}=708.2686$.

3,6-bis(3,3'-dimethoxy-[1,1':3',1'-terphenyl]-2'-yl)-1,2,4,5-tetrazine (10)

(2) (1 equiv, $0.0455 \mathrm{mmol}, 0.025 \mathrm{~g}$), $\left[\mathrm{Pd}_{2}\left(\mathrm{dba}_{3}\right]\right.$ ($20 \mathrm{~mol} \%$), (3-methoxyphenyl)boronic acid (8 equiv, 0.364 mmol , $0.055 \mathrm{~g}), \mathrm{K}_{2} \mathrm{CO}_{3}(8$ equiv, $0.364 \mathrm{mmol}, 0.050 \mathrm{~g})$, toluene (0.023 M), $110^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
$R_{f}=0.22$ (ethyl acetate/heptane $\left.=2: 8(v / v)\right)$. Yield $=66 \%$.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})=7.61(\mathrm{dd}, J=8.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 4 \mathrm{H}$), 7.06 (t, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), $6.84(\mathrm{dd}, J=2.6,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.73$ (ddd, $J=8.4,2.5$, $0.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.29(\mathrm{dt}, \mathrm{J}=7.8,1.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=166.4,159.5,143.1,141.5,130.8,130.3$, 130.1, 128.9, 122.2, 115.4, 112.6, 55.1.

Elemental analysis: Calcd (\%) for $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 0.3 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 1$.4toluene: C: $76.95, \mathrm{H}$: $5.68, \mathrm{~N}: 6.89$. Found: C:76.87, H: 5.28, N: 6.54.

HRMS + p ESI (m / z) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$Calcd for $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4}: 659.2652$. Found: $\mathrm{m} / \mathrm{z}=$ 659.2660.

3,6-bis(3,3'-dibromo-[1,1':3',1'-terphenyl]-2'-yl)-1,2,4,5-tetrazine (11)

(2) (1 equiv, $0.109 \mathrm{mmol}, 0.060 \mathrm{~g}),\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right]$ ($20 \mathrm{~mol} \%$), (4-bromophenyl)boronic acid (8 equiv, 0.879 mmol , $0.177 \mathrm{~g}), \mathrm{K}_{2} \mathrm{CO}_{3}$ (8 equiv, $0.879 \mathrm{mmol}, 0.121 \mathrm{~g}$), toluene (0.04 M), $110^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
$R_{f}=0.52$ (ethyl acetate $/$ heptane $\left.=2: 8(v / v)\right)$. Yield $=58 \%$.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=7.67-7.60(\mathrm{t}, \mathrm{J}=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}$, $4 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.36(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.66-6.60(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta(\mathrm{ppm})=166.3,142.2,142.1,132.9,130.9,130.9,130.9$, 130.8, 129.6, 128.4, 122.9, 77.6.

Elemental analysis: Calcd (\%) for $\mathrm{C}_{38} \mathrm{H}_{22} \mathrm{Br}_{4} \mathrm{~N}_{4} \cdot \mathrm{O}_{2} 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C: 49.88, H: 2.58, N: 5.97. Found: C:50.21, H: 2.38, N: 5.98.

HRMS $+\mathrm{pESI}(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{H}^{+}\right]$Calcd for $\mathrm{C}_{38} \mathrm{H}_{23} \mathrm{Br}_{4} \mathrm{~N}_{4}$: 850.8650. Found: $\mathrm{m} / \mathrm{z} 850=8659$.

3,6-bis(2,6-di(thiophen-2-yl)phenyl)-1,2,4,5-tetrazine (12)

(2) (1 equiv, $0.183 \mathrm{mmol}, 0.100 \mathrm{~g}),\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right]$ ($20 \mathrm{~mol} \%$), thiophen- 3 -ylboronic acid (8 equiv, $1.464 \mathrm{mmol}, 0.187$ g), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (8 equiv, $1.464 \mathrm{mmol}, 0.202 \mathrm{~g}$), toluene (0.046 M), $130^{\circ} \mathrm{C}$, 16 h .
$R f=0.4$ (ethyl acetate/heptane $=2: 8(\mathrm{v} / \mathrm{v})$). Yield $=13 \%$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.61(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.19(\mathrm{dd}, J=5.2,1.2 \mathrm{~Hz}, 4 \mathrm{H})$, 6.83 ($\mathrm{dd}, J=5.2,3.5 \mathrm{~Hz}, 4 \mathrm{H}$), 6.57 ($\mathrm{dd}, J=3.5,1.2 \mathrm{~Hz}, 4 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=165.8,139.8,134.74,131.3,129.7,129.3,127.3,126.1$, 125.6.

Elemental analysis: Calcd (\%) for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}: 60.18, \mathrm{H}: 3.7, \mathrm{~N}: 9.36$. Found: C:60.54, H: 3.68, N: 9.34.

HRMS $+\mathrm{pESI}(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{Na}^{+}\right]$Calcd for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}_{4} \mathrm{Na}: 585.0306$. Found: $\mathrm{m} / \mathrm{z}=585.0303$.

3,6-bis(2,6-di(thiophen-3-yl)phenyl)-1,2,4,5-tetrazine (13)

(2) (1 equiv, $0.183 \mathrm{mmol}, 0.100 \mathrm{~g}),\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right](20 \mathrm{~mol} \%)$, thiophen-3-ylboronic acid (8 equiv, $1.464 \mathrm{mmol}, 0.187$ g), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (8 equiv, $1.464 \mathrm{mmol}, 0.202 \mathrm{~g}$), toluene (0.046 M), $130^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
$R f=0.4$ (ethyl acetate/heptane $=2: 8(\mathrm{v} / \mathrm{v})$). Yield $=47 \%$.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.60(\mathrm{dd}, \mathrm{J}=8.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.19$ (dd, $J=5.0,3.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.79$ (dd, $J=5.0,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.76$ (dd, $J=3.0,1.3 \mathrm{~Hz}, 4 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=167.2,140.3,137.8,131.6,130.4,129.4,129.0,125.7$, 124.4.

Elemental analysis: Calcd (\%) for $\mathrm{C}_{3} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}_{4} \cdot 1.6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}: 60.91, \mathrm{H}: 3.61, \mathrm{~N}: 9.47$. Found: C:60.68, H: 3.72, N: 9.47.

HRMS + p ESI (m / z) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$Calcd for $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{~S}_{4}: 563.0487$. Found: $\mathrm{m} / \mathrm{z}=563.0482$.

UV-Vis measurements

The absorption spectra of 2-13 in dichloromethane are displayed in Figure S-1 (Figure S-2: zoom between 235430 nm ; Figure S-3: zoom between 430-650 nm) and the absorption data are given in Table S-1. The absorption spectra to visualize the maximum absorption bands were recorded at $8.0 \times 10^{-5}-9.0 \times 10^{-5} \mathrm{M}$.

3-11

3: $R=H$
4: $R=4-t B u$
5: $R=4-\mathrm{OMe}$
6: $R=4-F$
7: $R=4-B r$
8: $R=4-\mathrm{CF}_{3}$
9: $\mathrm{R}=4-\mathrm{COMe}$
10: $R=3-O M e$
11: $R=3-\mathrm{Br}$

12

13

Figure S-1: Molar absorption coefficient of compounds of tetrazines 2-13 in dichloromethane at $8.0-9.0 .10^{-5} \mathrm{M}$.

Figure S-2: Molar absorption coefficient of compounds of tetrazines $\mathbf{2 - 1 3}$ in dichloromethane at $8.0-9.0 \cdot 10^{-5} \mathrm{M}$ (zooming 235-430 nm).

Figure S-3: Molar absorption coefficient of compounds of tetrazines 2-13 in dichloromethane at about 8.0-9.0.10${ }^{5} \mathrm{M}$ (zooming 430-650 nm).

Table S-1: Photophysical properties for compounds 2-13 in dichloromethane: Absorption wavelength (λ, nm) molar absorption coefficient (ε, L. $\mathrm{mol}^{-1} . \mathrm{cm}^{-1}$). ${ }^{\mathrm{a}}$

Tz	λ_{1} (nm)	$\begin{aligned} & \hline \varepsilon_{1}\left(\lambda_{1}\right) \\ & \left(\mathrm{L} . \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}\right) \end{aligned}$	λ_{2} (nm)	$\begin{aligned} & \varepsilon_{2}\left(\lambda_{2}\right) \\ & \left(\mathrm{L} . \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}\right) \end{aligned}$
2	260	9253	532	515
3	296	13910	550	700
4	302	11069	548	696
5	282	25120	548	771
6	284	11458	549	732
7	294	11285	549	796
8	284	14270	549	652
9	265	10456	550	594
10	281	21369	548	652
11	295	12577	550	752
12	243	19330	522	933
13	291	11845	547	807

${ }^{\mathrm{a}} \boldsymbol{\lambda}_{\text {max }}$ at the maximum of absorbance and the molar extinction coefficients are determined from solutions prepared at a concentration ranging from 10^{-3} to $10^{-5} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature with one cm optical path in quartz cell.

Cyclic voltammetry measurements

All manipulations were performed using Schlenk techniques in an oxygen-free atmosphere of dry argon at room temperature ($T=20^{\circ} \mathrm{C} \pm 3{ }^{\circ} \mathrm{C}$). The supporting electrolyte, tetra- n-butylammonium hexafluorophosphate (TBAPF6), was degassed under vacuum before use and then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to a concentration of $0.1 \mathrm{~mol} \mathrm{~L}^{-1}$. Voltammetric analyses were carried out in a standard three-electrode cell with an Autolab PGSTAT 302 N potentiostat, connected to an interfaced computer that employed Electrochemistry Nova software (v. 1.11). The reference electrode was a KCl saturated calomel electrode (SCE) separated from the analyzed solution by a sintered glass disk filled with the background solution. The auxiliary electrode was a platinum foil separated from the analyzed solution by a sintered glass disk filled with the background solution. For all voltammetric measurements, the working electrode was a glassy carbon ($G C$) electrode ($\varnothing=3 \mathrm{~mm}$). Before each voltammetric analysis, the GC electrode was polished with a diamond suspension. In these conditions, when operating in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($0.1 \mathrm{M} \mathrm{TBAPF}_{6}$), the formal potential for the ferrocene $(+/ 0)$ couple was +0.46 V vs. SCE.

Figure S-4 and Table S-2: Comparison of the substrates 3,6-bis(phenyl)-1,2,4,5-tetrazine $\mathbf{1}$ and 3,6-bis (2,6-dibromophenyl)-1,2,4,5-tetrazine $\mathbf{2}$ as well as the heptaaromatic tetrazine $\mathbf{3}$ (unsubstituted), $\mathbf{4}$ (bearing a donor group $t \mathrm{Bu}$) and $\mathbf{8}$ (bearing a withdrawing group CF_{3}).

Figure S-4: Cyclic voltammograms of $\mathbf{1 - 4 , 8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 0.1 \mathrm{M} \mathrm{TBAPF}_{6}$. Concentration: $10^{-3} \mathrm{M}$; WE: glassy carbon $\emptyset=3 \mathrm{~mm}, v=100 \mathrm{mV} \mathrm{s}^{-1}$.

Table S-2: Redox events in 1-4 and 8 .

		Red				$\mathbf{O x}$
Entry	Compound	$E_{p a}(\mathbf{V})$	$E_{p c}(\mathbf{V})$	$E_{1 / 2}(\mathbf{V})$	$\boldsymbol{\Delta} E_{p}(\mathbf{m V})$	$E_{p a}(\mathbf{V})$
$\mathbf{1}$	$\mathbf{1}$	-0.92	-1.04	-0.98	120	2.05
$\mathbf{2}$	$\mathbf{2}$	-0.69	-0.82	-0.76	130	2.07
$\mathbf{3}$	$\mathbf{3}$	-0.925	-1.02	-0.98	95	2.02
$\mathbf{4}$	$\mathbf{4}$	-1.04	-1.14	-1.09	105	2.02
$\mathbf{5}$	$\mathbf{8}$	-0.79	-0.96	-0.88	170	1.88

Figure S-5 and Table S-3: Effect of donor substituents OMe in the para position (compound 5) and the meta position (compound 10).

Figure S-5: Cyclic voltammograms of $\mathbf{5}$ (solid black line) and $\mathbf{1 0}$ (red dashed line) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 0.1 \mathrm{M} \mathrm{TBAPF}$. Concentration: $10^{-3} \mathrm{M}$; WE: glassy carbon $\emptyset=3 \mathrm{~mm}, \nu=100 \mathrm{mV} \mathrm{s}^{-1}$.

Table S-3: Redox events in 5 and 10.

		Red				Ox
Entry	Compound	$E_{p a}(\mathbf{V})$	$E_{p c}(\mathbf{V})$	$E_{1 / 2}(\mathbf{V})$	$\boldsymbol{\Delta} E_{p}(\mathbf{m V})$	$E_{p a}(\mathbf{V})$
$\mathbf{1}$	$\mathbf{5}$	-0.91	-1.08	-0.99	170	1.81
$\mathbf{2}$	$\mathbf{1 0}$	-0.97	-1.09	-1.03	120	1.59

Figure S-6 and Table S-4: Effect of withdrawing -Br substituents in the para position (compound 7) and in the meta position (compound 11).

Figure S-6: Cyclic voltammograms of $\mathbf{7}$ (solid black line) and $\mathbf{1 1}$ (red dashed line) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 0.1 \mathrm{M}$ TBAPF 6 . Concentration: $10^{-3} \mathrm{M}$; WE: glassy carbon $\emptyset=3 \mathrm{~mm}, v=100 \mathrm{mV} \mathrm{s}^{-1}$.

Table S-4: Redox events in $\mathbf{7}$ and 11.

		Red				$\mathbf{O x}$	
Entry	Compound	$E_{p a}(\mathbf{V})$	$E_{p c}(\mathbf{V})$	$E_{1 / 2}(\mathbf{V})$	$\boldsymbol{\Delta} E_{p}(\mathbf{m V})$	$E_{p a}\left(\mathbf{O}_{1}\right)(\mathbf{V})$	$E_{p a}\left(\mathbf{O}_{2}\right)(\mathbf{V})$
$\mathbf{1}$	$\mathbf{7}$	-0.83	-0.95	-0.89	120	≈ 1.87	2.29
$\mathbf{2}$	$\mathbf{1 1}$	-0.83	-0.95	-0.89	120	≈ 1.87	2.29

Computational Study

Computational details

Quantum mechanics calculations were performed with the Gaussian16 software package. ${ }^{1}$ Energy and forces were computed by density functional theory with the hybrid M06-2X exchange-correlation functional. ${ }^{2}$ Geometries were optimized and characterized with the aug-cc-pVTZ basis set. ${ }^{3}$ Geometries are shown using CyIView. ${ }^{4}$ The non-covalent interactions were visualized with the Independent Gradient Model ${ }^{5}$ that can be seen as an extension of the NCI method of Yang et al. ${ }^{6}$ Hirshfeld surfaces analyses were conducted with Crystal Explorer 17.5. ${ }^{7}$

Hirshfeld surfaces

A visual way to analyze the interactions at play in a crystal is to map the Hirshfeld surface of the system with the normalized distance $d_{\text {norm }}$. We refer the interested reader to Ref. 7 and recall here the main definitions only.

The Hirshfeld surface defines the volume of space in which the promolecule electron density exceeds that from all neighboring molecules. For each point of this surface, one can compute three distances:

- $\quad d_{\mathrm{e}}$: distance from a point on the surface to the nearest nucleus outside the surface
- di: distance from a point on the surface to the nearest nucleus inside the surface
- $\quad d_{\text {norm }}=\frac{d_{i}-r_{i}^{v d W}}{r_{i}^{v d W}}+\frac{d_{e}-r_{e}^{v d W}}{r_{e}^{v d W}}$, where $r_{e}^{v d W}$ is the van der Waal radius of the nearest nucleus outside the surface and $r_{i}^{v d W}$ is the van der Waal radius of the nearest nucleus inside the surface.
In the following, the same color code will be used for $d_{\text {norm }}$: from red (distances shorter than sum of vdW radii) through white to blue (distances longer than sum of vdW radii), as illustrated in Figure S-7 below.

Figure S-7: Color code for Hirshfeld surfaces mapped with dnorm.

References

1) Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz,
A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
2) Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-41.
3) T. H. Dunning Jr., J. Chem. Phys. 1989, 90, 1007-23.
4) CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org). Last visited 20 June 2020
5) a) C. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García, E. Hénon, Phys. Chem. Chem. Phys. 2017, 19 (27), $17928-17936$.
b) C. Lefebvre, H. Khartabil, J.-C. Boisson, J. Contreras-Garcia, J.-P. Piquemal, J.-P.; E. Hénon, ChemPhysChem 2018, $19,1$.
6) E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498-6506.
7) a) Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19-32; b) Spackman, M. A.; McKinnon, J. J.; Jayatilaka,
D. Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm 2008, 10, 377-388. c) https://crystalexplorer.scb.uwa.edu.au/. Last visited July, $10^{\text {th }} 2020$.

Compound 1Br

Figure S-8: Hirshfeld surfaces mapped with $d_{\text {norm. }}$. left: front view, right: back view.

Figure S-9: Non-Covalent interactions illustrating stacking interactions (purple), C-H...Br interactions (red) and C-H... π interactions (green). Color code: carbon in grey, nitrogen in blue, hydrogen in white and bromine in red.

Compound 2

Figure S-10: Hirshfeld surfaces mapped with $\mathrm{d}_{\text {norm }}$.

Figure S-11: Non-covalent interactions for Compound 2. Left: Halogen $\mathrm{Br}-\mathrm{Br}$ bonds and $\mathrm{CH}-\mathrm{Br}$ bond; Right : $\mathrm{CH}-\mathrm{Br}$ and $\mathrm{Br}-\mathrm{Br}$ interactions (red), $\mathrm{CH}-\mathrm{N}$ interactions (orange) and $\mathrm{CH}-\pi$ interactions (green). Color code: carbon in grey, nitrogen in blue, hydrogen in white and bromine in red.

Molecular Electrostatic Potential

The molecular electrostatic potential for compound $\mathbf{2}$ is shown Fig. S-12.

Figure S-12: Molecular Electrostatic Potential for compound 2.

When superimposed with the X-ray structure (Fig SX2), it shows the favorable electrostatic interactions between the negatively charged lone pairs of the tetrazine core and the positively charged $\mathrm{C}-\mathrm{H}$ bonds of the electronpoor dibromophenyl groups.

Figure S-13: MEP of compound $\mathbf{2}$ superimposed on the X-ray structure.

Distorted geometry stability

$\mathrm{E}=0.00 \mathrm{Kcal} \mathrm{mol}^{-1}$

$\mathrm{E}=0.54 \mathrm{Kcal} \mathrm{mol}^{-1}$

Figure S-14: Distortion of tetrazine core of compound 2. Electronic energies at the M06-2X/aug-cc-pVTZ level.

Compound 3

Figure S-15: Hirshfeld surfaces for $\mathbf{3}$ conformer \mathbf{A}^{\prime} mapped with $\mathrm{d}_{\text {norm }}$ (left: front view, right: back view)

Figure S-16: Hirshfeld surfaces for compound $\mathbf{3}$ conformer A' mapped with d_{e}. Color code for d_{e} : red (short distances) through green to blue (long distances). Color code: carbon in grey, nitrogen in blue, hydrogen in white.

Figure S-17: Hirshfeld surfaces for compound $\mathbf{3}$ conformer \mathbf{B} ' mapped with $\mathrm{d}_{\text {norm }}$ (left: front view, right: back view).

Figure S-18: Non Covalent interactions map showing the $\mathbf{C H}-\pi$ interactions between \mathbf{A}^{\prime} (large ball \& stick) and \mathbf{B}^{\prime} molecules (slim ball \& stick). Color code: carbon in grey, nitrogen in blue, hydrogen in white.

Figure S-19: Superimposed views of $\mathbf{3}$ conformers \mathbf{A}^{\prime} and \mathbf{B}^{\prime}. Left: front view, Right: top view. Isomer \mathbf{A}^{\prime} is shown in red and isomer \mathbf{B} ' in green.

Compound 4

Figure S-20: Hirshfeld surfaces for compound $\mathbf{4}$ mapped with $d_{\text {norm }}$.

Compound 10

Figure S-21: Hirshfeld surfaces for compound 10 mapped with dnorm.

List of inter and intra-molecular interactions

Table S-5: List of inter and intra-molecular interactions

Compound	Type of interactions		Distances $(\AA ̊)$	Angle (${ }^{\circ}$)
$1-\mathrm{Br}$ (Figure 2)	intermolecular interactions between aromatic moieties	Ct1-Ct3 ${ }^{i}$ $\begin{aligned} & \mathrm{Ct} 1=\mathrm{C} 1(\mathrm{Br})-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6 \\ & \mathrm{Ct} 3^{i}=\mathrm{C} 9^{i}-\mathrm{C} 10^{i}-\mathrm{C}_{1}{ }^{\mathrm{i}}-\mathrm{C} 12^{\mathrm{i}}-\mathrm{C} 13^{i}-\mathrm{C} 14^{\mathrm{i}} \end{aligned}$ with $\mathrm{i}: 1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$	3.8547(13)	
		$\begin{aligned} & \text { Ct2-Ct2 } \\ & \mathrm{Ct} 2=\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 8 \\ & \mathrm{Ct}^{\mathrm{i}}=\mathrm{C} 7^{\mathrm{i}}-\mathrm{N} 1^{\mathrm{i}}-\mathrm{N} 2^{\mathrm{i}}-\mathrm{N} 3^{i}-\mathrm{N} 4^{i}-\mathrm{C} 8^{i} \\ & \text { with } \mathrm{i}: 1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z} \end{aligned}$	4.1285(11)	
	Hydrogen intermolecular interactions$\mathrm{C}-\mathrm{H} \cdots \mathrm{~N}$	$\begin{aligned} & \hline \mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 2^{\mathrm{ii}} \\ & \text { with } \mathrm{ii}: x, 1 / 2-y, 1 / 2+z \end{aligned}$	3.658(3)	141.20(13)
		C14-H14‥N3iii with iii : $x, 1 / 2-y,-1 / 2+z$	3.411(13)	131.78(14)
		$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{~N} 4^{\mathrm{iii}}$ with iii : $x, 1 / 2-y,-1 / 2+z$	3.487(3)	137.12(15)
2 (Figure 3)	intermolecular interactions between aromatic moieties	$\begin{aligned} & \text { Ct3-Ct3 } \\ & \mathrm{Ct} 3=\mathrm{C} 9-\mathrm{C} 10(\mathrm{Br} 3)-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14(\mathrm{Br} 4) \\ & \mathrm{Ct} 3^{i}=\mathrm{C} 9^{i}-\mathrm{C} 10^{i}(\mathrm{Br} 3)-\mathrm{C} 11^{i}-\mathrm{C} 12^{i}-\mathrm{C} 13^{i}-\mathrm{C} 14^{i}(\mathrm{Br} 4) \\ & \text { with } \mathrm{i}:-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z} \end{aligned}$	3.7292(15)	
	Hydrogen intermolecular interactions$\mathrm{C}-\mathrm{H} \cdots \mathrm{~N}$	$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~N} 2^{\mathrm{i}}$ with $\mathrm{i}:-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$	3.247(3)	109.23(16)
		C13-H13‥N3ii with ii : 1-x, 1-y, 1-z	3.091(3)	105.36(16)
$3 \mathrm{~A}^{\prime}$ (Figure 6, bottom)	Hydrogen intermolecular interactions$\mathrm{C}-\mathrm{H} \cdots \mathrm{~N}$	C10-H10‥N2iv with iv: $x, 2-y, 1 / 2+z$	3.357(3)	139.50(15)
		C17-H17…N1 ${ }^{\text {viii }}$ with viii : $x, 1-y,-1 / 2+z$	3.373(3)	134.66(11)
$3 \text { B' }$ (Figure 9)	Hydrogen intramolecular interactions $\mathrm{C}-\mathrm{H} \cdots \mathrm{~N}$	$\mathrm{C} 28-\mathrm{H} 28 \cdots \mathrm{~N} 3 \mathrm{ii}$ with ii : 1/2-x, 1/2-y, 1-z	3.287(3)	122.79(14)
		$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~N} 3^{\mathrm{i}}$ with $i: 1-x, 1-y,-z$	3.442(3)	155.83(15)

4 (Figure 11)	Hydrogen intermolecular interactions $\mathrm{C}-\mathrm{H} \cdots \mathrm{~N}$	$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{~N} 1^{i i}$ with ii : 1-x, 1-y, 1-z	3.527(3)	167.26(14)
10 (Figure 13)	Hydrogen intermolecular interactions$\mathrm{C}-\mathrm{H} \cdots \mathrm{~N}$	C21-H21‥N2 ${ }^{v}$ with v: $1+x, y, z$	3.7238(16)	176.41(7)
	Hydrogen intermolecular interactions$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$	C21-H21…O1v with v : $1+\mathrm{x}, \mathrm{y}, \mathrm{z}$	3.3735(16)	123.25(8)
		C21-H21…O2ii with ii : 2-x, 1-y, 1-z	3.4858(15)	143.03(7)

${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR copy of products

3,6-di([1,1':3',1'-terphenyl]-2'-yl)-1,2,4,5-tetrazine (3)

13 CNMR (75 MHz), CDCl3

||

3,6-bis(4,4'-di-tert-butyl-[1,1':3',1"-terphenyl]-2'-yl)-1,2,4,5-tetrazine (4)

13C NMR (75 MHz), CDCl3
笑

3,6-bis(4,4'-dimethoxy-[1,1':3',1"-terphenyl]-2'-yl)-1,2,4,5-tetrazine (5)

1 H NMR, $500 \mathrm{MHz}, \mathrm{CDCl} 3$

Cis

3,6-bis(4,4'-difluoro-[1,1':3',1'-terphenyl]-2'-yl)-1,2,4,5-tetrazine (6)

-

$\stackrel{\sim}{\sim}$

19F NMR (470 MHz), CDCl3

$-{ }^{-114.51}$

[^0]

3,6-bis(4,4'-dibromo-[1,1':3',1"-terphenyl]-2'-yl)-1,2,4,5-tetrazine (7)

1 H NMR, 500 MHz , CDCl3

3C NMR, 125 MHz, CDCl3
Nof toom on o
$\underset{\sim}{m}$

3,6-bis(4,4'-trifluoromethyl-[1,1':3',1'-terphenyl]-2'-yl)-1,2,4,5-tetrazine (8)
1H NMR (500 MHz), CDCl3

19 F NMR (470 MHz), CDCl3

-30	-35	-40	-45	-50	-55	-60	$\begin{array}{r} -65 \\ \mathrm{f} 1(\mathrm{ppm}) \end{array}$	-70	-75	-80	-85	-90	-95

3,6-bis(4,4'-acetyl-[1,1':3',1'-terphenyl]-2'-yl)-1,2,4,5-tetrazine (9)

3,6-bis(3,3'-dimethoxy-[1,1':3',1"-terphenyl]-2'-yl)-1,2,4,5-tetrazine (10)

3,6-bis(3,3'-dibromo-[1,1':3',1'-terphenyl]-2'-yl)-1,2,4,5-tetrazine (11)

1H NMR, 500 MHz , CDCl3

13C NMR, 125 MHz, CDCl3
M
$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\gtrless}}$

3,6-bis(2,6-di(thiophen-2-yl)phenyl)-1,2,4,5-tetrazine (13)

3,6-bis(2,6-di(thiophen-3-yl)phenyl)-1,2,4,5-tetrazine (13)

[^0]:

