ARTICLE

The structure of the metastable K₁₈Ta₅Zr₅F₆₃ phase

Miroslav Boča, *a Maxim Molokeev^{b, d}, Aydar Rakhmatullin^c, Blanka Kubíková^a, and Zuzana Netriová^a

^{a.} Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 36 Bratislava, Slovakia

^{b.} Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok 50 bld. 38, Krasnovarsk, 660036, Russia ^{c.} Conditions Extremes et Materiaux: Haute Temperature et Irradiation, 1D avenue de la Recherche Scientifique CS 90055, 45071 Orleans cedex 2, France

^{d.} Siberian Federal University, Krasnoyarsk, 660041, Russia

Supporting Information

for NJCH

Table 15. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²) of K₁₈Ta₅Zr₅F₆₃

Atom	X	У	Z	U _{iso} */U _{eq}	Occ.
Ta1	0.34021(9)	0.32871(11)	3/4	0.0277(4)	0.69(2)
Zr1	0.34021(9)	0.32871(11)	3/4	0.0277(4)	0.31(2)
Ta2	2/3	1/3	3/4	0.0289(7)	0.52(2)
Zr2	2/3	1/3	3/4	0.0289(7)	0.48(2)
Zr3	0	0	1/4	0.0440(16)	1
K1	0.2674(4)	0.4220(4)	1/4	0.0369(13)	1
К2	0.5379(5)	0.4026(5)	1/4	0.0482(17)	1
КЗ	0.2295(10)	0.1487(8)	1/4	0.104(5)	1
F1	0.2440(9)	0.2843(9)	0.524 (3)	0.061(4)*	1
F2	0.402(2)	0.4231(19)	0.504 (7)	0.132(9)*	1
F3	0.3903(13)	0.2822(12)	0.543 (4)	0.099(6)*	1
F4	0.296(2)	0.409(3)	3/4	0.124(12)*	1
F5	0.227(4)	0.194(4)	3/4	0.081(14)*	0.5
F6	0.5727(16)	0.2609(16)	0.554 (5)	0.127(8)*	1
F7	0.091(3)	0.079(3)	0.051 (8)	0.092(12)*	0.5

Table 2S. Main geometric parameters (Å) of $K_{18}Ta_5Zr_5F_{63}$

Ta1—F3	1.89(2)	K1—F4	2.988(8)
Ta1—F3 ⁱ	1.89(2)	K1—F4 ^{xxiii}	2.988(8)
Ta1—F1	1.958(15)	K1—F6 ^{xxi}	2.60(3)
Ta1—F1 ⁱ	1.958(15)	K1—F6 ^{xxii}	2.60(3)
Ta1—F4	1.90(4)	K1—F1 ^{xi}	2.736(16)
Ta1—F5	2.18(6)	K1—F1	2.736(16)
Ta1—F2 ⁱ	2.04(4)	K1—F3 ^{xxii}	2.81(2)
Ta1—F2	2.04(4)	K1—F3 ^{xxi}	2.81(2)
Ta2—F6 ^v	1.87(3)	K1—F2	2.77(3)
Ta2—F6 ^{vi}	1.87(3)	K1—F2 ^{xi}	2.77(3)
Ta2—F6 ⁱ	1.87(3)	K1—Zr2 ^x	3.811(6)
Ta2—F6	1.87(3)	K1—Ta2 ^x	3.811(6)
Ta2—F6 ^{vii}	1.87(3)	K2—F2 ^{xi}	2.95(3)
Ta2—F6 ^{viii}	1.87(3)	K2—F2	2.95(3)
Zr3—F7 ^{xi}	1.89(4)	K2—F3 ^{xi}	2.92(2)
Zr3—F7 ^{xii}	1.89(4)	K2—F3	2.92(2)
Zr3—F7 ^{xiii}	1.89(4)	K2—F2 ^x	3.03(3)
Zr3—F7 ^{xiv}	1.89(4)	K2—F2 ^{xxiv}	3.03(3)
Zr3—F7 ^{xv}	1.89(4)	K2—F6 ^{viii}	3.01(3)
Zr3—F7	1.89(4)	K2—F6 ^{xxv}	3.01(3)
Zr3—F7 ^{xvi}	2.30(4)	K2—F4×	3.10(4)
Zr3—F7 ^{iv}	2.30(4)	K2—F6	3.33(3)
Zr3—F7 ^{xvii}	2.30(4)	K2—F6 ^{xi}	3.33(3)
Zr3—F7 ^{xviii}	2.30(4)	K2—Ta1 [×]	4.050(7)
Zr3—F7 ^{xix}	2.30(4)	K3—F7	2.38(4)
Zr3—F7 ^{xx}	2.30(4)	K3—F7 ^{xi}	2.38(4)
		K3—F1	2.754(16)
		K3—F1 ^{xi}	2.754(16)

2 | J. Name., 2012, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Journal Name

л	D	•	r	Ŀ	~	1.1	с.
А	Г	Γ.	ι.	Ľ	L	L	с.

K3—F1 ^{xxvi}	2.826(16)
K3—F1 ⁱⁱⁱⁱ	2.826(16)
K3—F5 ⁱⁱⁱ	2.89(6)
K3—F5 ^{xxiii}	3.030(15)
K3—F5	3.030(15)
K3—F3 ^{xi}	3.10(2)
K3—F3	3.10(2)
K3—F7 ^{xviii}	3.23(5)

Symmetry codes: (i) *x*, *y*, -z+3/2; (ii) *x*, *y*, z+1; (iii) *y*, -x+*y*, -z+1; (iv) *x*-*y*, *x*, z+1/2; (v) -*y*+1, *x*-*y*, -z+3/2; (vi) -*y*+1, *x*-*y*, *z*; (vii) -*x*+*y*+1, -*x*+1, z+3/2; (viii) -*x*+*y*+1, -*x*+1, *z*; (ix) *x*-*y*+1, *x*, z+1/2; (x) -*x*+1, -*y*+1, -z+1; (xi) *x*, *y*, -z+1/2; (xii) -*x*+*y*, -*x*, *z*; (xiii) -*y*, *x*-*y*, *z*; (xiv) -*y*, *x*-*y*, -z+1/2; (xv) -*x*+*y*, -*x*, -z+1/2; (xvi) -*x*, -*y*, -*z*; (xvii) *y*, -*x*+*y*, z+1/2; (xviii) *y*, -*x*+*y*, -*z*; (xx) -*x*, -*y*, *z*+1/2; (xxi) *x*-*y*, *x*, -*z*+1; (xxii) *x*-*y*, *x*, *z*-1/2; (xxiii) *x*, *y*, *z*-1/2; (xxii) *x*-*y*, *z*+1/2; (xxi) -*x*+*y*, -*z*+1/2; (xxii) *x*-*y*, *z*-1/2; (xxiii) *x*-*y*, *z*-1/2; (xxiii) *x*, *y*, *z*-1/2; (xxiii) *x*, *y*, *z*-1/2; (xxiii) *x*-*y*, *z*-1/2; (xxiii) *x*-*y*, *z*-1/2; (xxiii) *x*-*y*, *z*-1/2; (xxii) *x*-*y*, *z*-1/2; (xxii) *x*-*y*, *z*-1/2; (xxii) *x*-*y*, *z*-1/2; (xxi) -*x*+*y*, *z*-1/2; (xxi) -*x*+*y*, *z*-1/2.

Table 3S. Main parameters of processing and refinement of $K_{18}Ta_5Zr_5F_{63}$ and K_3ZrF_7

Т, К	Phase	Space group	Cell parameters (º, Å), Cell volume (ų)	R_{wp}, R_p (%), χ^2
			q = 17.2600 (9).	
153	$K_{18}Ta_5Zr_5F_{63}$	P6₃/m	c = 5.8203 (3),	9.51, 6.65, 2.43
	10 5 5 65	5,	V = 1501.6 (2)	
			a = 17.2933 (8),	
183	$K_{18}Ta_5Zr_5F_{63}$	P63/m	c = 5.8246 (3),	9.25, 6.53, 2.37
			V = 1508.5 (2)	
			a = 17.3236 (8),	
213	$K_{18}Ta_5Zr_5F_{63}$	P6₃/m	c = 5.8279 (3),	8.86, 6.21, 2.27
			V = 1514.7 (2)	
			<i>a</i> = 17.3491 (8),	
243	$K_{18}Ta_5Zr_5F_{63}$	P6₃/m	<i>c</i> = 5.8320 (3),	8.65, 6.10, 2.21
			V = 1520.2 (2)	
			a = 17.3770 (9),	
273	$K_{18}Ta_5Zr_5F_{63}$	P6₃/m	<i>c</i> = 5.8364 (3),	8.60, 6.02, 2.19
			V = 1526.2 (2)	
			<i>a</i> = 17.4023(9),	
303	$K_{18}Ta_5Zr_5F_{63}$	P6₃/m	<i>c</i> = 5.8430(3),	6.24, 4.57, 1.61
			V = 1532.4(2)	
			a = 17.4201(7),	
333	$K_{18}Ta_5Zr_5F_{63}$	P6₃/m	c = 5.8496(3),	6.20, 4.51, 1.60
			V = 1537.29(15)	
			a = 17.4468(8),	
363	$K_{18}Ta_5Zr_5F_{63}$	P6₃/m	<i>c</i> = 5.8557(3),	6.10, 4.47, 1.58
			V = 1543.62(16)	
			a = 17.4721(7),	
393	$K_{18}Ta_5Zr_5F_{63}$	P63/m	c = 5.8607(3),	5.95, 4.38, 1.53
			V = 1549.41(15)	
422		DG. /m	a = 17.5006(8),	E 07 / 00 1 E1
423	K181 d5215F63	<i>Р</i> 6 ₃ / <i>т</i>	<i>c</i> = 5.8673(3),	5.87, 4.33, 1.51

ARTICLE

Journal Name

			V = 1556.23(15)	
			a = 17.5274(7),	
453	$K_{18}Ta_5Zr_5F_{63}$	P6₃/m	<i>c</i> = 5.8739(3),	6.34, 4.76, 1.62
			V = 1562.75(15)	
			a = 17.5567(8),	
483	$K_{18}Ta_5Zr_5F_{63}$	P6₃/m	<i>c</i> = 5.8837(3),	5.82, 4.30, 1.49
			V = 1570.62(17)	
			a = 17.5824(8),	
513	$K_{18}Ta_5Zr_5F_{63}$	P6₃/m	<i>c</i> = 5.8952(3),	5.54, 4.19, 1.42
			V = 1578.29(16)	
			a = 17.5930(7),	
	$K_{18}Ta_5Zr_5F_{63}$	P6₃/m	<i>c</i> = 5.9122(2),	
543			V = 1584.74(15)	5.05, 3.92, 1.29
	V 7×F	Fm3m	a = 9.07(2),	
	K3Z1F7		V = 746(5)	
			a = 17.6022(8),	
	$K_{18}Ta_5Zr_5F_{63}$	P6 ₃ /m	<i>c</i> = 5.9340(3),	
573			V = 1592.26(18)	5.11, 4.03, 1.31
	V 7rE	Fm3m	a = 9.073(3),	
	N3ZI F7		<i>V</i> = 746.9(7)	
603		P6 ₃ /m	a = 17.609(7),	
	$K_{18}Ta_5Zr_5F_{63}$		c = 5.944(3),	
			V = 1596(1)	4.70, 3.68, 1.19
	V . 7rE	Fm3m	a = 9.069(4),	
	N321 F7		V = 746(1)	
622	K. 7rE	F m 2 m	a = 9.0778(3),	5 52 / 2/ 1 20
033	N321 F7	FMSM	<i>V</i> = 748.1(6)	5.55, 4.54, 1.28

4 | J. Name., 2012, **00**, 1-3

This journal is © The Royal Society of Chemistry 20xx

Journal Name

Figure 1S. The twinning mechanism in $K_{18}Ta_5Zr_5F_{63}$. The unit cell rotates around the [210] direction in real space. The ratio of the twinned block is close to 0.5:0.5.

Figure 2S. ¹⁹F MAS NMR spectra of the $K_{18}Ta_5Zr_5F_{63}$ sample measured a) three months after the synthesis, b) two months after the synthesis, and c) around ten days after the synthesis; and of d) K_2ZrF_6 and e) K_2TaF_7 .

Journal Name

Figure 3S. DSC record of fresh sample of K₁₈Ta₅Zr₅F₆₃ (green dotted line) and three months old sample (violet line).