Electronic Supplementary Information for

Identification and Isolation of Highly Emissive Cinnamic Derivatives in π-Stacked Polybenzofulvene Derivatives for Optoelectronic Applications

Marco Paolino,^a Annalisa Reale, ^a Vincenzo Razzano,^a Gianluca Giorgi,^a Germano Giuliani,^a Francesca Villafiorita-Monteleone^b Chiara Botta,^b Carmen Coppola, ^{c,d} Adalgisa Sinicropi, ^{c,d,e} Andrea Cappelli.^{*,a}

^aDipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022),

Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy

^bIstituto di Scienze e Tecnologie Chimiche "G. Natta" - SCITEC (CNR), Via A. Corti 12, 20133 Milano, Italy

^cR²ES Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy, <u>www.r2eslab.com</u>

^dCenter for Colloid and Surface Science (CSGI), 50019 Firenze, Italy

eNational Research Council, Institute for the Chemistry of OrganoMetallic Compounds (CNR-

ICCOM), 50019 Firenze, Italy

Table ESI1. Optical properties of cinnamic derivatives 1a-c compared with those of the corresponding polybenzofulvene derivatives poly-6-DMFL-BF3k, poly-6-MCBZ-BF3k, and poly-6-TPA-BF3k.

	solution ^a			powder	
compound or polymer	$\lambda_{ab}(nm)$	$\lambda_{emi}(nm)$	QY (%)	$\lambda_{emi}(nm)$	QY (%)
1a	334	430	57	407	64 ^b
poly-6-DMFL- BF3k °	295, 319, 345	465	21	486 ^d	24 ^d
1b	242, 302, 347	480	77	448, 466	69 ^e
poly-6-MCBZ- BF3k °	290, 350	497	17	535	19
1c	292, 371	540	78	470	80 f
poly-6-TPA- BF3k °	305, 377	495	46	530	35

 $\frac{1}{a} \text{ dichloromethane, } {}^{b} \lambda_{ex} = 350 \text{ nm, } {}^{c} \text{ see ref [1], } {}^{d} \text{ cast films from dichloromethane solutions, } {}^{e} \lambda_{ex} = 380 \text{ nm, } {}^{f} \lambda_{ex} = 420 \text{ nm.}$

Table ESI2.TD-DFT (MPW1K/6-311+G(2d,p) computed absorption maxima (λ_a^{max} , nm), vertical excitation energies (E_{exc} , eV), oscillator strengths (*f*) and composition in terms of molecular orbitals for the lowest singlet-singlet excitation of **1a**, **1b**, **1c'** and **1c''** in CH₂Cl₂ and for **1c**, **1c'** and **1c''** in gas-phase.

Molecules		Excited states	λ^{a}_{max}	Eexc	f	Transition (%)
1a	CH ₂ Cl ₂	1	336	3.68	1.70	89% H → L
1b	CH ₂ Cl ₂	1	336	3.69	1.64	85% H-1→L
		2	325	3.82	0.06	72% H → L
		3	275	4.51	0.08	31% H→L+1 24% H-2→L
		8	238	5.21	0.31	35% H→L+3 14% H-3→L
		9	232	5.35	0.34	31% H-3→L 8%H-1→L+2
1c	Gas-phase	1	367	3.38	0.09	62% H-2→L+1
		3	358	3.46	0.21	56% H-3→L
		4	349	3.56	2.67	29% H-1→L+3
						13% H-2→L+1
						9% H-2 → L
1c'	CH ₂ Cl ₂	1	364	3.40	1.30	85% H → L
		3	286	4.34	0.31	82% H → L+3
		4	285	4.34	0.21	64% H-1→L 9% H→L+3
1c'	Gas-phase	1	351	3.52	1.17	82% H → L
		3	283	4.37	0.22	88% H→L+3
		4	278	4.46	0.22	64% H-1→L
1c''	CH ₂ Cl ₂	2	366	3.38	2.54	51% H-1→L
		8	287	4.33	0.19	45% H→L+6
		9	287	4.33	0.37	45% H → L+7
		10	284	4.36	0.51	44% H-3→L 9% H-1→L+7
1c''	Gas-phase	2	356	3.48	2.24	53% H-1→L
				-		24% H-2→L+1
		7	286	4.34	0.28	31% H-1→L+6
						26% H → L+7
		8	285	4.34	0.14	40% H→L+6
						34% H-1→L+7
		10	277	4.47	0.42	40% H-3→L
						23% H-2→L+1

References

[1] A. Cappelli, V. Razzano, G. Fabio, M. Paolino, G. Grisci, G. Giuliani, A. Donati, R. Mendichi, W. Mróz, F. Villafiorita-Monteleone, C. Botta, Side chain engineering in π -stacked polybenzofulvene derivatives bearing electron-rich chromophores for OLED applications, RSC Adv. 5 (2015) 101377–101385. doi:10.1039/c5ra21164f.