Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

A simple and sensitive fluorescent sensor platform for Al³⁺ sensing in aqueous media and monitoring through combined PET and ESIPT mechanisms: Practical applications in drinking water and bio–imaging

Duygu Aydin^{a*}, Ibrahim Berk Gunay^a, Sukriye Nihan Karuk Elmas^a, Tahir Savran^a, Fatma Nur Arslan^a, Gokhan Sadi^b, Ibrahim Yilmaz^{a*}

^a Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey

^b Department of Biology Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey

*Corresponding Author-1: Address: Tel: E–mail:	 Prof. Dr. Ibrahim Yilmaz ^a Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry, 70100, Karaman, Turkiye +90 338 226 00 00/2152 iyilmaz@kmu.edu.tr
*Corresponding Author-2: Address: Tel: E-mail:	Dr. Duygu Aydin ^a Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry, 70100, Karaman, Turkiye +90 338 226 00 00/3861 <u>duyguaydin@kmu.edu.tr</u>

Fig S1.	¹ H–NMR spectra of the probe BOTH
Fig S2.	¹³ C–APT– NMR spectra of the probe BOTH
Fig S3.	FT–IR spectra of the probe BOTH
Fig S4.	MALDI–TOF MS spectra of the BOTH –Al ³⁺ complex
Fig S5.	UV–Vis (a) titration of the probe BOTH toward Al ³⁺ and (b) spectral behaviors of the probe BOTH toward Al ³⁺ and other cations
Fig S6.	Pareto's graph of our fluorescence method
Fig S7.	Quantum yields of the probe BOTH and probe BOTH toward Al ³⁺ (λ_{ex} = 327 nm, λ_{em} = 468 nm, probe conc. 5.0 µM).
Fig S8.	Competitive selectivity of probe BOTH toward Al ³⁺ (20.0 equiv) in the presence of anions (20.0 equiv) in HEPES/DMSO (v/v, 99.95/0.05, pH=7.0) (λ_{ex} = 327 nm, λ_{em} = 468 nm, probe conc. 5.0 µM).
Fig S9 .	Competitive selectivity of probe BOTH toward Al ³⁺ (20.0 equiv) in the presence of amino acids (20.0 equiv) in HEPES/DMSO (v/v, 99.95/0.05, pH=7.0) (λ_{ex} = 327 nm, λ_{em} = 468 nm, probe conc. 5.0 µM).
Fig S10	Reversible visual fluorescence changes after sequential addition of Al ³⁺ to probe BOTH solutions (λ_{ex} = 327 nm, λ_{em} = 468 nm, probe conc. 5.0 µM).
Fig S11.	Response time of the BOTH –Al ³⁺ complex (λ_{ex} = 327 nm, λ_{em} = 468 nm, probe conc. 5.0 µM).
Fig S12.	In vitro cytotoxic effects of the probe BOTH on HepG2 cells for 24–h incubation. Data presented the mean of at least triplicate measurements and given as mean \pm standard deviation
Fig S13.	Real-time growth dynamics of the HepG2 cells in the presence of different doses of the synthesized the probe BOTH
Table S1.	Nominal parameters specified during the assessment of our fluorescence method
Table S2.	Parameters employed in the robustness analysis of our fluorescence method
Table S3.	Factorial combinations employed in the Youden test of robustness analysis of our fluorescence method
Table S4.	Dixon's test employed to the repeatability of our fluorescence method
Table S5.	Intermediate precision analysis of our fluorescence method confirmed by the HorRat ratio

Fig S1. ¹H–NMR spectra of the probe BOTH

Fig S2. ¹³C–APT– NMR spectra of the probe **BOTH**

Fig S3. FT–IR spectra of the probe **BOTH**

Fig S4. MALDI–TOF MS spectra of the **BOTH** $-Al^{3+}$ complex

Fig S5. UV–Vis (a) titration of the probe **BOTH** toward Al³⁺ and (b) spectral behaviors of the probe **BOTH** toward Al³⁺ and other cations

Fig S6.Pareto's graph of our fluorescence method

Fig S7. Quantum yields of the probe **BOTH** and probe **BOTH** toward Al³⁺ (λ_{ex} = 327 nm, λ_{em} = 468 nm, probe conc. 5.0 µM).

Fig S8. Competitive selectivity of probe **BOTH** toward Al³⁺ (20.0 equiv) in the presence of anions (20.0 equiv) in HEPES/DMSO (v/v, 99.95/0.05, pH=7.0) (λ_{ex} = 327 nm, λ_{em} = 468 nm, probe conc. 5.0 µM).

Fig S9.Competitive selectivity of probe BOTH toward Al3+ (20.0 equiv) in the presence of
amino acids (20.0 equiv) in HEPES/DMSO (v/v, 99.95/0.05, pH=7.0) (λ_{ex} = 327 nm,
 λ_{em} = 468 nm, probe conc. 5.0 µM).

Fig S10Reversible visual fluorescence changes after sequential addition of Al3+ to probe
BOTH solutions (λ_{ex} = 327 nm, λ_{em} = 468 nm, probe conc. 5.0 µM).

Fig S11. Response time of the **BOTH** –**Al**³⁺ complex (λ_{ex} = 327 nm, λ_{em} = 468 nm, probe conc. 5.0 µM).

Fig S12.In vitro cytotoxic effects of the probe BOTH on HepG2 cells for 24-h incubation.Data presented the mean of at least triplicate measurements and given as mean \pm standard deviation

Fig S13. Real–time growth dynamics of the HepG2 cells in the presence of different doses of the synthesized the probe **BOTH**

slit of excitation	10 nm
slit of emission	10 nm
monitored wavelength	λ_{ex} =327 nm, λ_{em} =468 nm
photomultiplier tube (PMT) voltage	600 Volt
temperature	room temperature
pH	pH=7.0 [HEPES/DMSO (v/v, 99.95/0.05) media]
time of storage after preparation of the samples	20 h at room temperature

Table S1. Nominal parameters specified during the assessment of our fluorescence method

		situation			
	parameters	nominal (+)	Changed (–)		
1	storage temperature (°C)	rt	4		
2	source of water	ultrapure	distilled		
3	pH	7.0	5.0		
4	storage time before the analysis (h)	16	24		
5	nitrogen atmosphere	no	yes		
6	HEPES/DMSO (v/v, pH=7.0)	99.95/0.05	99.90/0.10		
7	temperature of analysis (°C)	25	15		

Table S2.Parameters employed in the robustness analysis of our fluorescence method

Parameter ∖ <i>C_i</i>	C_1	C_2	C_3	<i>C</i> ₄	C_5	C_6	C ₇	<i>C</i> ₈
1	+	+	+	+	-	_	-	-
2	+	+	-	_	+	+	_	_
3	+	_	+	_	+	_	+	_
4	+	+	_	_	_	_	+	+
5	+	_	+	_	_	+	_	+
6	+	_	_	+	+	_	_	+
7	+	_	_	+	_	+	+	_

 Table S3.
 Factorial combinations employed in the Youden test of robustness analysis of our fluorescence method

	average values (x)			highest value	lowest value		
concentration levels	16h	20h	24h	of fluorescence	Q	of fluorescence	Q
1×10 ⁻⁴ M	430.08	547.20	556.16	556.16	0.07	430.08	0.93
2×10 ⁻⁴ M	583.97	388.69	427.27	583.97	0.80	388.69	0.20

Table S4.Dixon's test employed to the repeatability of our fluorescence method

		analyst (1)	analyst (2)	$m{F}_{[analyst(2);analyst(1)]}$
6 h 0 ⁻⁴ M	Average value (x)	583.97	592.44	
	SD	2.87	6.53	5.02
	RSD (%)	0.49	1.10	5.02
	RSD Horwitz (%)	5.36	5.36	$\Gamma_{calculated} > \Gamma_{critical}$
—	HorRat ratio	0.09	0.21	
_	Average value (x)	430.08	479.14	
Σ	SD	8.41	5.07	0.20
-0 19	RSD (%)	1.96	1.06	0.29 E < E
L×1	RSD Horwitz (%)	4.17	4.17	$\Gamma_{calculated} \leq \Gamma_{critical}$
	HorRat ratio	0.47	0.25	
	Average value (x)	547.20	580.76	
Σ	SD	6.44	3.82	0.21
	RSD (%)	1.18	0.66	0.51
7 7	RSD Horwitz (%)	5.36	5.36	$P_{calculated} < P_{critical}$
_	HorRat ratio	0.22	0.12	
_	Average value (x)	388.69	392.80	
Ξ	SD	14.14	6.24	0.10
	RSD (%)	3.64	1.59	0.19
	RSD Horwitz (%)	4.17	4.17	Γ calculated $\sim \Gamma$ critical
	HorRat ratio	0.87	0.38	
_	Average value (x)	556.16	573.43	
Ξ	SD	5.57	4.13	0.52
24 ŀ 1×10⁻	RSD (%)	1.00	0.72	0.32
	RSD Horwitz (%)	5.36	5.36	Γ calculated $\sim \Gamma$ critical
	HorRat ratio	0.19	0.13	
_	Average value (x)	427.27	420.75	
Ξ4 Σ	SD	6.08	3.33	0.21
1 40	RSD (%)	1.42	0.79	V.31
2×1	RSD Horwitz (%)	4.17	4.17	Γ calculated $\sim \Gamma$ critical
7	HorRat ratio	0.34	0.19	

Table S5. Intermediate precision analysis of our fluorescence method confirmed by the HorRat ratio

 $F_{critical}=2.98$