Supporting Information

Bifunctional NaCl Template for Synthesis of Si@Graphitic Carbon Nanosheets as Advanced Anode Materials for Lithium Ion Batteries

Hongqiang Wang^{a,b}, Yajun Ding^{a,b}, Jiaying Nong^{a,b}, Qichang Pan^{a,b,*}, Zhian Qiu^{a,b},

Xiaohui Zhang^c, Fenghua Zheng^{a,b,*}, Qiang Wu^{a,b}, Youguo Huang^{a,b}, Qingyu Li^{a,b}

a School of Chemical and Pharmaceutical Sciences, Guangxi Normal University,

Guilin, 541004, China

b Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Guilin, 541004, China

c Guangxi Key Laboratory for Electrochemical Energy Materials, Guangxi University, Nanning 416000, China

*Corresponding author. Tel: 401 863-2685. E-mail: panqc0526@163.com (Q. Pan); zhengfh870627@163.com (F. Zheng).

Fig. S1 XRD patterns of ball-milled Si and Si@GC nanosheets.

Fig. S2 XRD patterns of Fe-Si-O composite withou added NaCl.

Fig. S3 XRD patterns of as-prepared composite used glucose as the cources.

Fig. S4 (a) Raman spectra of Si and Si@GC nanosheets; (b) TGA curves of Si@GC

nanosheets.

Fig. S5 SEM images of (A) commercial Si powder and (B) ball balling Si powder.

Fig. S6 Discharge and charge curves of as-prepared samples used (A) ascorbic acid

and (B) glucose as the sources without added NaCl, respectively.

Fig. S7 Discharge/charge profiles of (A) Si@GC nanosheets and (B) pure Si under

different cycles.

Fig. S8 Discharge/charge profiles of (A) Si@GC nanosheets and (B) pure Si under

different current densities.

Fig. S9 (A) Nyquist plots of Si and Si@GC electrodes before cycling; (B) before and

after 200 th cycle of Si@GC composite at 0.5 A g⁻¹

Table S1 Compared with electrochemical performance of 2D Si@GC nanosheets with previous reported Si-based anode materials.

Materials	Current	Initial discharge/	Reversible capacity	Ref.
	density	charge specific	(mAh/g)/	
		capacity (mAh/g)	cycle number (n)	
ternary SiGC	0.5A/g	1016/818	610/300	[42]
composite				
core-shell	0.5A/g	-	1366/50	[47]
yolk-shell				
Si@C@void@C				
silicon/carbon	300 mA/g	1256/901	655/100	[40]
nanosheets				
The p-Si-Ag/C	0.2A/g	1566.7/1028.8	Over 1000/200	[51]
composites				
the sandwich-	300 mA/g	1352.7/1001	930.9/400	[21]
structured Si@C-				
rGO composite				
Silicon/Wolfram	0.1A/g	1297/892	535/250	[15]
Carbide@Graphen				
e composite				
Si nanosheets@C	0.1A/g	1846/719	822/200	[27]
composite				
Si@Graphitic	0.5A/g	2662.3/ 2092.2	1450.7/400	This work
Carbon Nanosheets				