Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Aerobic oxidation of 2-aminophenol catalysed by a series of mononuclear copper(II) complexes: phenoxazinone synthase-like activity and mechanistic study

Nirmalya Podder and Sukanta Mandal*

Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur -721302, India.

Email: sukanta.mandal@chem.iitkgp.ac.in

Table of contents	Page no.
Figure S1, Figure S2, Figure S3	S 3
Figure S4, Figure S5, Figure S6	S 4
Figure S7, Figure S8	S5
Figure S9, Figure S10	S 6
Figure S11, Figure S12, Figure S13	S7
Figure S14, Figure S15	S 8
Figure S16, Figure S17	S9
Figure S18, Figure S19	S10
Figure S20, Figure S21	S 11
Figure S22, Figure S23, Figure S24	S12
Figure S25, Figure S26	S13
Figure S27, Figure S28	S14
Figure S29	S15
Derivation of equation (2)	S16

Figure S1. ¹H NMR (400 MHz, 300 K) spectrum of ligand $[H_2]L^1$ in CDCl₃. Asterisk (*) denotes solvent residual peak.

Figure S2. ¹H NMR (400 MHz, 300 K) spectrum of ligand $[H_2]L^2$ in CDCl₃.

Figure S3. ¹H NMR (400 MHz, 300 K) spectrum of ligand $[H_2]L^3$ in CDCl₃. Asterisk (*) denotes solvent residual peak.

Figure S4. IR spectrum of complex $[Cu(L^1)(Cl)_2]$ MeOH (**1** MeOH).

Figure S5. IR spectrum of complex $[Cu(L^2)(Cl)_2]$ [·]H₂O (2·H₂O).

Figure S6. IR spectrum of complex $[Cu(L^3)(Cl)_2]$ (3).

Figure S7. Correlation between imine C=N bond lengths and stretching frequencies for the copper(II) complexes **1**'MeOH, **2**'H₂O and **3**.

Figure S8. HRMS-ESI spectrum of complex $[Cu(L^1)(Cl)_2]$ [·]MeOH (**1**[·]MeOH) in methanol with trace quantity of HCOOH. The m/z at 296.0251, 330.9933 and 341.0225 correspond to species $[L^1Cu]^+$, $[L^1CuCl]^+$ and $[L^1Cu(HCOO)]^+$, respectively.

Figure S9. HRMS-ESI spectrum of complex $[Cu(L^2)(Cl)_2]$ [·]H₂O (**2**[·]H₂O) in methanol with trace quantity of HCOOH. The *m/z* at 349.0509, 384.0195 and 394.0489 correspond to species $[L^2Cu]^+$, $[L^2CuCl]^+$ and $[L^2Cu(HCOO)]^+$, respectively.

Figure S10. HRMS-ESI spectrum of complex $[Cu(L^3)(Cl)_2]$ (**3**) in methanol with trace quantity of HCOOH. The *m/z* at 299.0356, 334.0041 and 344.0332 correspond to species $[L^3Cu]^+$, $[L^3CuCl]^+$ and $[L^3Cu(HCOO)]^+$, respectively.

Figure S11. UV-vis spectrum of $[Cu(L^1)(Cl)_2]$ [·]MeOH (1[·]MeOH) in methanol.

Figure S12. UV-vis spectrum of $[Cu(L^2)(Cl)_2]$ [·]H₂O (**2**[·]H₂O) in methanol.

Figure S13. UV-vis spectrum of $[Cu(L^3)(Cl)_2]$ (**3**) in methanol.

Figure S14. Experimental (black line) and simulated (red line) X-band EPR spectra of complex $[Cu(L^1)(Cl)_2]$ MeOH (**1** MeOH) in methanol at 298 K (left) and 77 K (right). Microwave frequency \approx 9.61 GHz (298 K) and 9.67 GHz (77 K), microwave power = 15 mW, modulation frequency = 5 kHz, modulation amplitude = 3 G. Simulated parameters: (298 K) $g_{iso} = 2.127$, $A_{iso} = 72.8$ G, line width = 7.2 mT; (77 K) $g_1 = 2.23$, $g_{\perp} = 2.083$, $A_1 = 181$ G, $A_{\perp} = 16.5$ G, (line width)₁ = 1.19 mT, (line width)_{\perp} = 12.20 mT.

Figure S15. Cyclic voltammogram of copper(II) complexes in MeOH (scan rate: 100 mV/s; supporting electrolyte: ~0.1M LiCl).

Figure S16. Reaction product analysis by GC-MS. Representative GC-MS chromatogram and mass spectra for catalytic reaction with 1'MeOH are shown here.

Figure S17. ¹H NMR (400 MHz, 300 K) spectrum of 2-amino-phenoxazine-3-one (APX) in CDCl₃. Asterisk (*) denotes solvent residual peak.

Figure S18. Dependence of initial rate on the concentration of complex (black block for **1'MeOH**; blue triangle for **2'H₂O**; magenta circle for **3**) for the aerobic oxidation of H₂AP. Conditions: $[H_2AP]_0 = 3.75 \times 10^{-3} \text{ M}$, $[\text{complex}]_0 = 2.5 \times 10^{-5} \text{ to } 7.5 \times 10^{-5} \text{ M}$ in air-saturated MeOH-H₂O (33%, v/v; pH 8.6) at 30 °C. Symbols and solid lines represent the experimental data and linear fit, respectively.

Figure S19. Detection of H_2O_2 in catalytic solutions by iodide titration: electronic spectra of the formation of I_3^- (experimental procedure is described in the main text).

Figure S20. X-band EPR spectra of complex **1'MeOH** (1 mM; black line) and after treating with 2-aminophenol (5 mM; red line) at 298 K in methanol. Microwave frequency \approx 9.61 GHz, microwave power = 15 mW, modulation frequency = 5 kHz, modulation amplitude = 3 G.

Figure S21. X-band EPR spectrum of reaction mixture containing complex **1**'MeOH (1 mM) and 2-anilino-4,6-di-*tert*-butylphenol (10 mM) at 77 K in methanol. Microwave frequency \approx 9.67 GHz, microwave power = 15 mW, modulation frequency = 5 kHz, modulation amplitude = 3 G.

Figure S22. Arrhenius plots for the oxidation of 2-aminophenol catalysed by (a) **1**'MeOH, (b) **2**'H₂O and (c) **3** in MeOH-H₂O (33%, v/v; pH 8.6).

Figure S23. Eyring plots for the oxidation of 2-aminophenol catalysed by (a) **1**'MeOH, (b) **2**'H₂O and (c) **3** in MeOH-H₂O (33%, v/v; pH 8.6).

Figure S24. Dependence of rate on pH for the oxidation of 2-aminophenol catalysed by (a) 1'MeOH, (b) 2'H₂O and (c) 3 in MeOH-H₂O (33%, v/v; 30 °C).

Figure S25. ESI-MS spectrum of a 1:10 mixture of complex **1'MeOH** and 2-aminophenol in methanol-water.

Figure S26. ESI-MS spectrum of a 1:10 mixture of complex $2H_2O$ and 2-aminophenol in methanol-water.

Figure S27. ESI-MS spectrum of a 1:10 mixture of complex 3 and 2-aminophenol in methanol-water.

Figure S28. Possible reaction pathway of { Cu^{I} -(ISQ)⁻⁻} with dioxygen to form BQMI. N-N-N represents tridentate ligand L^{1} or L^{2} or L^{3} for complexes 1'MeOH or 2'H₂O or 3, respectively. S represents Cl⁻/water/methanol and n varies from 0 to 2 depending on the types of ligand, S.

Figure S29. Nonlinear least squares fitting using equation 2 (described in the main text) to the plots of v_0 vs $[H_2AP]_0$ for catalytic reactions with complexes (a) **1**'MeOH, (b) **2**'H₂O and (c) **3**. Black square: experimental data; red square: calculated value; red line: theoretical fitting; black dashed line: residual plot.

Derivation of equation (2):

Equation (2) was derived by considering the following reaction model,

$$E + S \xrightarrow{K_{eq}} ES \xrightarrow{K_{VT}} ES' \xrightarrow{k} E + P$$

where, E & S represent catalyst and substrate, respectively; ES and ES' are the two valence tautomers of complex-substrate adduct.

$$K_{eq} = \frac{[ES]}{[E][S]} \quad \dots \text{ (i) }; \quad K_{VT} = \frac{[ES']}{[ES]} \quad \dots \text{ (ii)}$$

From equation (i) and (ii) we obtain:
$$[E] = \frac{[ES']}{K_{eq}K_{VT}[S]} \quad \dots \text{ (iii)}$$

To derive the kinetic equation corresponding to the proposed mechanistic model, we express the total concentration of catalyst as:

$$\begin{split} [E]_{0} &= [E] + [ES] + [ES'] \\ \text{so, } [ES'] &= [E]_{0} - [E] - [ES] \\ \text{so, } [ES'] &= [E]_{0} - \frac{[ES']}{K_{eq}K_{VT}[S]} - \frac{[ES']}{K_{VT}} \\ \text{so, } [ES'] &\{ 1 + \frac{1}{K_{eq}K_{VT}[S]} + \frac{1}{K_{VT}} \} = [E]_{0} \\ \text{so, } [ES'] &= \frac{K_{eq}K_{VT}[E]_{0}[S]}{1 + K_{eq}[S] + K_{eq}K_{VT}[S]} \quad \dots \dots (\text{iv}) \end{split}$$

At initial stage of reaction it is assumed that the decrease of initial concentration of substrate is negligible. Then the initial rate of reaction can be expressed as,

$$v_0 = k[ES'] = \frac{kK_{eq}K_{VT}[E]_0[S]_0}{1 + K_{eq}[S]_0 + K_{eq}K_{VT}[S]_0} \qquad \dots \dots (v)$$

Equation (v) now can be represented in the form of equation (2) as shown in the main text.