Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

A Novel Phenyl and Thiophene Dispiro Indenoquinoxaline Pyrrolidine Quinolones Induced Apoptosis via G1/S and G2/M Phase Cell Cycle Arrest in MCF-7 Cells

Selvaraj Shyamsivappan^a, Arjunan Saravanan^b, Raju Vivek^c, Thangaraj Suresh^a, Ramasamy Shankar^d Kodiveri Muthukaliannan Gothandam^e Palathurai Subramaniam Mohan^{a,*}

^aSchool of Chemical Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
^bDRDO-BU CLS, Bharathiar University campus, Coimbatore, Tamil Nadu, India.
^cCancer Research Program (CRP), Bio-Nano Therapeutics Research Laboratory, School of Life Sciences, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India.
^dDepartment of Physics, Bharathiar University, Coimbatore, Tamil Nadu, India.
^eSchool of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India

Spectral data

Figure S1. ¹H NMR spectrum of compound 8a

Figure S2. ¹³C NMR spectrum of compound 8a

Figure S3. ¹H NMR spectrum of compound 8b

Figure S4. ¹³C NMR spectrum of compound 8b

Figure S5. ¹H NMR spectrum of compound 8c

Figure S6. ¹³C NMR spectrum of compound 8c

Figure S7. ¹H NMR spectrum of compound 8d

Figure S8. ¹³C NMR spectrum of compound 8d

Figure S9. ¹H NMR spectrum of compound 8e

Figure S10. ¹³C NMR spectrum of compound 8e

Figure S11. ¹H NMR spectrum of compound 8f

Figure S12. ¹³C NMR spectrum of compound 8f

Figure S13. ¹H NMR spectrum of compound 9a

Figure S14. ¹³C NMR spectrum of compound 9a

Figure S15. ¹H NMR spectrum of compound 9b

Figure S16. ¹³C NMR spectrum of compound 9b

Figure S17. ¹H NMR spectrum of compound 9c

Figure 18. ¹³C NMR spectrum of compound 9c

Figure 19. ¹H NMR spectrum of compound 9d

Figure 20. ¹³C NMR spectrum of compound 9d

Figure 21. ¹H NMR spectrum of compound 9e

Figure 22. ¹³C NMR spectrum of compound 9e

Figure 23. ¹H NMR spectrum of compound 9f

Figure 24. ¹³C NMR spectrum of compound 9f

Empirical formula	$C_{37}H_{27}N_5O_4S$
Formula weight	637.69
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P 2 ₁ /c
Unit cell dimensions	$a = 13.472(3)$ Å; $\alpha = 90$
	$b = 16.568(3) \text{ Å}; \beta = 93.40(3)^{\circ}$
	$c = 13.524(3)$ Å; $\gamma = 90$
Volume	3013.5(11) Å ³
Ζ	4

Table S1 Crystallographic details of the compound 9f

Density (calculated)	1.406 Mg/m ³
Absorption coefficient	0.160 mm ⁻¹
F(000)	1328
Crystal size	$0.22\times0.18\times0.14\ mm^3$
Theta range for data collection	2.410 to 23.933°.
Index ranges	$-14 \le h \le 14, -17 \le k \le 17, -14 \le l \le 14$
Reflections collected	23334
Independent reflections	3888 [R(int) = 0.0241]
Completeness to theta =	
25.242°	71.40%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3888 / 3 / 443
Goodness-of-fit on F2	1.045
Final R indices [I>2sigma(I)]	R1 = 0.0349, wR2 = 0.0888
R indices (all data)	R1 = 0.0396, $wR2 = 0.0948$
Largest diff. peak and hole	0.184 and -0.291 e.Å ⁻³