Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

## Electronic Supporting Information (ESI):

## One-pot synthesis of luminol-gallium nanoassembles and their peroxidase-mimetic activity for colorimetric detection of pyrophosphate

Xue Tian,<sup>a</sup> Wenjing Qi,\*<sup>a</sup> Maoyu Zhao,<sup>a</sup> Jianping Lai, <sup>b</sup> Di Wu,<sup>a</sup> Lianzhe Hu,<sup>a</sup> Yan Zhang <sup>a</sup>

<sup>a</sup> Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry,

Chongqing Normal University, Chongqing 401331, P. R. China.

<sup>b</sup>Key Laboratory of Eco-Chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China \*Corresponding author. E-mail: wenjingqi616@cqnu.edu.cn (W. Qi); Tel:+86-23-65362777.



## **Optimization of Method.**

**Fig. S1** The stability for catalyst activity of luminol-Ga nanoassembles and its application in PPi detection.  $c(PPi, \mu M)$ : 10. c(luminol, mM): 0.8;  $c(Ga^{3+})$ : 0.1 mM;  $c(H_2O_2, M)$ : 0.2; c(TMB, mM): 1; 0.04 M acetate buffer solution: pH 4.0.  $A_0$  represents the absorbance of luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system (control); *A* represents the absorbance of luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system in the presence of PPi;  $(A_0-A)/A_0$  represents the absorbance decreased effect after the addition of PPi to luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system. All the error bars represent the standard deviation of three measurements.



**Fig. S2** The effect of pH on the PPi detection. 0.04 M acetate buffer solution pH: 3.2, 3.6, 4.0, 4.4 and 4.8.  $c(PPi, \mu M)$ : 15; c(luminol, mM): 0.8;  $c(Ga^{3+})$ : 0.1 mM;  $c(H_2O_2, M)$ : 0.2; c(TMB, mM): 1; 0.04 M acetate buffer solution: pH 4.0.  $A_0$  represents the absorbance of luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system (control); *A* represents the absorbance of luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system in the presence of PPi;  $(A_0-A)/A_0$  represents the absorbance decreased effect after the addition of PPi to luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system. All the error bars represent the standard deviation of three measurements.



**Fig. S3** The effect of oxidation reaction temperature on PPi detection using luminol-Ga<sup>3+</sup> nanoassembles. Temperature (°C): 19, 25, 27, 37 and 50. c(PPi,  $\mu$ M): 15;

*c*(luminol, mM): 0.8; *c*(Ga<sup>3+</sup>): 0.1 mM; *c*(H<sub>2</sub>O<sub>2</sub>, M): 0.2; *c*(TMB, mM): 1; 0.04 M acetate buffer solution: pH 4.0.  $A_0$  represents the absorbance of luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system (control); *A* represents the absorbance of luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system in the presence of PPi;  $(A_0-A)/A_0$  represents the absorbance decreased effect after the addition of PPi to luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system. All the error bars represent the standard deviation of three measurements.



**Fig. S4** The effect of oxidation reaction time on PPi detection using luminol-Ga<sup>3+</sup> nanoassembles. Reaction time (min): 10, 20, 30, 40, 50, 60, 70 and 80. c(PPi,  $\mu$ M): 15; c(luminol, mM): 0.8; c(Ga<sup>3+</sup>): 0.1 mM; c(H<sub>2</sub>O<sub>2</sub>, M): 0.2; c(TMB, mM): 1; 0.04 M acetate buffer solution: pH 4.0. All the error bars represent the standard deviation of three measurements.  $A_0$  represents the absorbance of luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system (control); A represents the absorbance of luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system in the presence of PPi;  $(A_0-A)/A_0$  represents the absorbance decreased effect after the addition of PPi to luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system. All the error bars represent the standard deviation of three measurements.



**Fig. S5** The effect of  $Ga^{3+}$  on PPi detection using luminol- $Ga^{3+}$  nanoassembles.  $c(Ga^{3+}, mM)$ : 0.01, 0.02, 0.05, 0.1, 0.6 and 0.8; c(luminol, mM): 0.8;  $c(PPi, \mu M)$ : 15;  $c(H_2O_2, M)$ : 0.2; c(TMB, mM): 1; 0.04 M acetate buffer solution: pH 4.0. All the error bars represent the standard deviation of three measurements.



**Fig. S6** Comparison of PPi detection and mechanism investigation. TMB-H<sub>2</sub>O<sub>2</sub> system (curve a); luminol-TMB-H<sub>2</sub>O<sub>2</sub> system (curve b); PPi-luminol-TMB-H<sub>2</sub>O<sub>2</sub> system (curve c); Ga<sup>3+</sup>-TMB-H<sub>2</sub>O<sub>2</sub> system (curve d); PPi-Ga<sup>3+</sup>-TMB-H<sub>2</sub>O<sub>2</sub> system (curve e); luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system (curve f); PPi-luminol-Ga nanoassembles-TMB-H<sub>2</sub>O<sub>2</sub> system (curve g). c(PPi,  $\mu$ M): 10; c(luminol, mM): 0.8; c(Ga<sup>3+</sup>): 0.1 mM; c(H<sub>2</sub>O<sub>2</sub>, M): 0.2; c(TMB, mM): 1; 0.04 M acetate buffer solution: pH 4.0.

| <b>Coexisting substances</b>                         | <b>Coexisting concentration</b> | Changes of absorbance |
|------------------------------------------------------|---------------------------------|-----------------------|
|                                                      | (µM)                            | (%)                   |
| Na(I), Cl <sup>-</sup>                               | 750                             | + 2.8                 |
| K(I), Cl <sup>-</sup>                                | 750                             | - 3.4                 |
| Mg(II), Cl <sup>-</sup>                              | 750                             | + 3.8                 |
| Ca(II), Cl <sup>-</sup>                              | 750                             | - 4.2                 |
| Zn(II), SO4 <sup>2–</sup>                            | 750                             | - 3.7                 |
| Fe(III), Cl <sup>-</sup>                             | 750                             | - 2.8                 |
| K(I), NO <sub>3</sub> <sup>-</sup>                   | 750                             | + 2.5                 |
| Na(III), PO <sub>4</sub> <sup>3–</sup>               | 300                             | + 4.4                 |
| Na(III), HPO <sub>4</sub> <sup>2–</sup>              | 300                             | + 2.8                 |
| Na(III), H <sub>2</sub> PO <sub>4</sub> <sup>-</sup> | 300                             | + 3.2                 |
| K(I), I <sup>-</sup>                                 | 750                             | - 2.6                 |
| K(I), Br <sup>-</sup>                                | 750                             | - 2.9                 |

 Table S1 The anti-interference ability.

The concentration of PPi is 15  $\mu$ M. Other conditions are kept the same with the procedures of PPi detection mentioned above.

| Samples        | Added PPi | Found PPi           | Mean recovery   |
|----------------|-----------|---------------------|-----------------|
|                | (µM)      | (µM, n=3)           | (%, n=3)        |
|                |           |                     |                 |
| 1 a            | 2         | 1.97, 1.94, 2.03    | 98.7 ± 2.5      |
| 2 <sup>a</sup> | 6         | 5.86, 5.92, 5.90    | $98.2\pm0.5$    |
| 3 a            | 10        | 10.35, 10.28, 10.16 | $102.6\pm0.9$   |
| 4 <sup>b</sup> | 2         | 1.91, 1.95, 1.98    | 97.3 ± 1.8      |
| 5 <sup>b</sup> | 6         | 5.88, 6.21, 6.14    | $101.3 \pm 2.9$ |
| 6 <sup>b</sup> | 10        | 9.85, 10.22, 10.10  | $100.6 \pm 0.2$ |

Table S2 Recovery tests of PPi in lake water and tap water samples

<sup>a</sup> lake water samples <sup>b</sup> tap water samples