Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Galvanic Replacement of Liquid Metal Galinstan with Copper for the Formation of Photocatalytically Active Nanomaterials

Olawale Oloye,^{1,2} Joseph F. S. Fernando^{1,2}, Eric R. Waclawik^{1,2}, Dimitri Golberg^{1,2} and

Anthony P. O'Mullane^{1,2*}

¹ School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane,

QLD 4001, Australia.

² Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD

4001, Australia.

Corresponding author. Email: anthony.omullane@qut.edu.au

Figure S1. Digital images of a liquid metal galinstan droplet in different concentrations (low) of neutral copper salt (CuSO₄.5H₂O) at 0 hour, and 10 hours.

Figure S2. Digital images of a liquid metal galinstan droplet in 7.0 mM copper salt $(CuSO_4.5H_2O)$ after 24 hours of galvanic replacement reaction at room temperature, showing the formation of brownish copper pigment at the surface of bulk galinstan drop.

Figure S3. Digital images of a liquid metal galinstan droplet in different concentrations of neutral copper salt ($CuSO_4.5H_2O$) at (**a**) 0 hour and (**b**) 24 hours.

Figure S4. Digital images of a liquid metal galinstan droplet in 0.1 M copper salt (CuSO₄.5H₂O) after 24 hours of galvanic replacement reaction at room temperature.

Figure S5. Reduction in the intensity of absorption of 0.1 M CuSO_4 solution when exposed to liquid metal Galinstan (note solution was diluted with water prior to measuring the UV-vis spectra to ensure good quality spectra with an intensity < 1 a.u.).

Figure S6. Digital images of the reaction vial after galinstan droplet was reacted with 1 M CuSO₄ after 72 hours (**a**) acidified solution (pH 3.74) and (**b**) CuSO₄ in DI water.

Figure S7. XRD pattern of (a) sample S1 and (b) sample S3 where Rietveld refinement of the patterns are also shown.

Figure S8. HRTEM image of sample S1.

Figure S9. Low magnification TEM image of GaInSn sonicated in acidified 5 mM CuSO₄, (b) high resolution TEM image, (c) SAED pattern and (d) STEM image and corresponding EDX maps.

Figure S10. (a) S1 (1.3mg) photocatalytic degradation curve of RhB (b) S1 (1.1 mg) photocatalytic degradation curve of TB

Figure S11. (a, b) SEM images of sample S4 (c, d) SEM images of sample S5.

Figure S12. (a) chromoamperometry graph showing electrodeposition of copper nanoparticles for sample S4 and S5 on ITO (b) Cyclic voltammetry of the as-deposited Cu nanoparticles (S4 &S5) recorded in 1 M NaOH, (c) Photocatalytic degradation of methyl orange under visible light conditions monitored by UV-vis spectrometry of samples S4, S5 and InSnO (ITO).

Figure S13. SEM images of sample S3.

Figure S14. Liquid GaSn (10 wt % Sn) after sonication in acidic conditions (a-b) SEM images,(c) EDX mapping and (d) EDX spectrum.

Figure S15. Photocatalytic degradation of methyl orange under solar simulated conditions monitored by UV-vis spectrometry of GaSn system (Figure S14) and GaInSn sonicated in acidified 5 mM CuSO₄ (Figure S9).

Table S1. Summary o	f synthesis	conditions
---------------------	-------------	------------

Sample ID	Synthesis Method	Starting materials	Added materials
S1	Sonication/Galvanic reaction	Acidified water + GaInSn	CuSO ₄ [0.2 M]
S2	Sonication/Galvanic reaction	Acidified water + GaInSn	-
S 3	Sonication/Galvanic reaction	Acidified water + Gallium	CuSO ₄ [0.2M]
S4, S5	Electrodeposition	$CuSO_{4}.5H_{2}O+H_{2}SO_{4}$	-

Samples S4 and S5 are electrodeposited Cu nanomaterials on ITO electrodes from 50 mM $CuSO_4$ in acidic medium, S4 was electrodeposited on InSnO (ITO) for a duration of 70s at - 1.0V vs. Ag/AgCl while S5 was deposited for only 10 s at the same experimental condition.

Table S2. Brisbane, Australia weather report for June 24, 2019, at exact time the investigation was carried out^[1]

Time (AEST)	Temperature (°C)	Dew Point (°C)

9:00	15.0	7.3
10:00	16.6	6.7
11:00	18.1	7.2
12:00	18.5	6.7
13:00	19.7	6.8
14:00	20.3	7.7
15:00	18.7	7.8
16:00	17.8	8.4

[1] Observations for Brisbane, <u>http://www.bom.gov.au/</u>, accessed: June 24, 2019.