Electronic Supporting Information

Separation of Ethane and Ethylene by a Robust Ethane-Selective Calcium-Based Metal-Organic Framework

Yuhan Lin, a Yuzhe Li, b Hao Wang,*a Dawei Luo,*c Feng Lin, c and Jing Li*da

aHoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China.
bMaterials Science and Engineering Department, University of North Texas, Denton, Texas 76203, USA.
cSchool of Applied Chemistry and Biological Technologies, Shenzhen Polytechnic, Shenzhen, Guangdong 518055, P.R. China.
dDepartment of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, United States.

E-mail: wanghao@szpt.edu.cn, jingli@rutgers.edu
Materials and characterizations. All reagents used were purchased from commercial vendors and used without purification. Powder X-ray diffraction (PXRD) patterns were performed on a Bruker D8 Advance diffractometer. Data were collected between 3° and 40° of 2θ with a scan speed of 5.0 deg/min. Thermogravimetric analysis (TGA) data were recorded on a TGA550 (TA Instruments) Analyzer with a temperature ramping rate of 10 °C/min from RT to 600 °C under nitrogen atmosphere. Gas adsorption experiments were performed using a volumetric gas sorption analyzer (3Flex, Miromeritics).

Synthesis of Ca(H$_2$tcpb). CaCl$_2$ (90 mg), H$_4$tcpb (90 mg) were mixed in 10 mL absolute ethanol in a 25-mL autoclave. The mixture was stirred for 1 hour at room temperature, and then heated at 100°C for 3 days. After being cooled to RT, colorless block-shaped crystals were filtered, washed thoroughly with ethanol and dried under air.

Column breakthrough measurements. MOF samples were packed into a stainless steel column (the steel column was 14 cm in length with 10 mm of inner diameter with silica wool filling the void space. The sorbent was vacuumed at 180 °C for 2 hours with a helium flow before the temperature of the column was decreased to room temperature. The flow of He was then turned off while a gas mixture (ethane/ethylene: 50/50, V/V) was sent into the column with a total flow rate of 2ml/min. The downstream was monitored using a mass spectrometer..
Fig. S1. PXRD patterns of Ca(H$_2$tcpb). From bottom to top: black: as-synthesized, red: heating at 120 °C in open air for 2 days, blue: heating at 150 °C in open air for 2 days, purple: heating at 180 °C in open air for 2 days.

Fig. S2. Thermogravimetric analysis (TGA) curve of Ca(H$_2$tcpb)
Fig. S3. Adsorption-desorption isotherm of ethylene at 278, 288, and 298 K.
Fig. S4. Adsorption-desorption isotherm of ethane at 278, 288, and 298 K.

Fig. S5. Adsorption-desorption isotherm of ethane and ethylene at 298 K for samples after being heating at 180 °C for 2 days.
Fig. S6. PXRD patterns of Ca(H₂tcpb). From bottom to top: black: as made, red: after exposure under 90%RH for 2 days, blue: after immersed in water for 2 days.

Fig. S7. Multicomponent column breakthrough curve for Ethane/Ethylene (90/10) at 298 K.
Fig. S8. Consecutive runs of multicomponent column breakthrough curve for an equimolar binary mixture of Ethane/Ethylene (50/50) at 298 K