Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Y-shaped potential third-order nonlinear optical material - 3-(2-amino-2-oxoethyl)-5-methyl hexanoic acid: An analysis of structural, spectroscopic and docking studies

Nuthalapati Poojith^a, Krishna Murthy Potla^{b*}, Francisco A. P. Osório^{c,d}, Clodoaldo Valverde^{e,f}, Suneetha Vankayalapati^{a,g}, P. A. Suchetan^h, M. Rajaⁱ

^a Intern, Sri Ramachandra Institute of Higher Education and Research, Ramachandra Nagar, Porur, Chennai, 600 116, India.

^b Department of Chemistry, Bapatla Engineering College (Autonomous), Acharya Nagarjuna University Post Graduate Research Centre, Bapatla-522 102, A.P., India.

^c Instituto de Física, Universidade Federal de Goiás, 74.690-900, Goiânia, GO, Brazil.

^d Pontificia Universidade Católica de Goiás, 74605-100, Goiânia, GO, Brazil.

^e Laboratório de Modelagem Molecular Aplicada e Simulação (LaMMAS), Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, 75001-970, Anápolis, GO, Brazil.

^fUniversidade Paulista, 74845-090, Goiânia, GO, Brazil.

^g Department of Chemistry, Bapatla College of Arts and Sciences, Baptla-522 101, A.P., India.

^h Department of Studies and Research in Chemistry, University College of Science, Tumkur University, Tumkur-572 103, Karnataka, India.

ⁱ Department of Physics, Govt. Thirumagal Mills College, Gudiyatham, Vellore, 632602, Tamilnadu, India.

*Corresponding author: krishnamurthypotla@gmail.com

Fig. S1 Some potent biologically active drug moieties.

Fig. S2 ¹H-NMR spectrum of AOEMHA.

Fig. S3 ¹³C-NMR spectrum of AOEMHA.

Fig. S4 3D Hirshfeld surface and 2D Finger print analysis of 3-(2-amino-2-oxoethyl)-5methylhexanoic acid.

Fig. S5 Representation of bond critical points (BCP) for the crystal structures of 3-(2-amino-2-oxoethyl)-5-methylhexanoic acid indicating the bond paths analyzed in Table S1.

Fig. S6 Infrared spectrum of AOEMHA using (a) DFT/B3LYP/6-311++G (d,p) and (b) experimental data.

Fig. S7 Raman spectrum of AOEMHA using (a) DFT/B3LYP/6-311++G (d,p) and (b) experimental data.

Fig. S8 Pictorial representation of HOMO-LUMO plots of AOEMHA.

Fig. S9 Atomic absorption and emission spectra of AOEMHA are computed at TD-DFT/B3LYP/6-311++G(d) level of theory.

Fig. S10 Representative of MEP surface of AOEMHA.

Fig. S11 Two dimensional graphical embodiments of Electron Localization Function (ELF) of AOEMHA.

Fig. S12 Two dimensional graphical embodiments of Localized Orbital Locator (LOL) of AOEMHA.

Fig. S13 Groups acid (A), amide (B) and isopropyl (C) of AOEMHA compound.

Table S1. Topological analysis performed via QTAIM for the crystal structures of 3-(2-amino-2-oxoethyl)-5-methylhexanoic acid, all data are in a.u..

Table S2. Geometrical parameters of the 3-(2-amino-2-oxoethyl)-5-methylhexanoic acid.

Table S3. Calculated scaled wave numbers, observed IR and Raman bands and assignment

 of 3-(2-amino-2-oxoethyl)-5-methylhexanoic acid.

Table S4. Second-order perturbation theory analysis of Fock matrix in NBO basis

 corresponding to the intramolecular bonds of the title compound.

Table S5. NBO results showing the formation of Lewis and non-Lewis orbitals.

Table S6. Partial Charges in isolated and embedded molecule

Table S7. Comparison of linear refractive index for 3-(2-amino-2-oxoethyl)-5-

methylhexanoic acid crystal with experimental results for others organic crystals.

Table S8. Molecular docking values of AOEMHA with target proteins (a) 4BDU, (b) 4DBS, (c) 4DBW, (d) 4FAL and (e) 4FAM.

•

Fig. S1 Some potent biologically active drug moieties.

Fig. S2 ¹H-NMR spectrum of AOEMHA.

Fig. S3 ¹³C-NMR spectrum of AOEMHA.

(B) View of O2-H3---O1, N5-H6---O4 and N5-H7---O1 interactions on *d_{norm}* surface.

(c) Finger print analysis (a) Total interaction 100% (b) O---H/H---O interaction 33.3%.

(C) 2D Finger print plots of AOEMHA along with percentage of interactions.

Fig. S4 3D Hirshfeld surface and 2D Finger print analysis of 3-(2-amino-2-oxoethyl)-5-methylhexanoic acid.

Fig. S5 Representation of bond critical points (BCP) for the crystal structures of 3-(2-amino-2-oxoethyl)-5-methylhexanoic acid indicating the bond paths analyzed in Table S1.

Fig. S6 Infrared spectrum of AOEMHA using (a) DFT/B3LYP/6-311++G (d,p) and (b) experimental data.

Fig. S7 Raman spectrum of AOEMHA using (a) DFT/B3LYP/6-311++G (d,p) and (b) experimental data.

Fig. S8 Pictorial representation of HOMO-LUMO plots of AOEMHA.

Fig. S9 Atomic absorption and emission spectra were computed at TD-DFT/B3LYP/6-311++G(d) level of theory.

Fig. S10 Representative of MEP surface of AOEMHA.

Fig. S11 Two dimensional graphical embodiments of Electron Localization Function (ELF) of AOEMHA.

Fig. S12 Two dimensional graphical embodiments of Localized Orbital Locator (LOL) of AOEMHA.

Fig. S13 Groups acid (A), amide(B)and isopropyl (C) of AOEMHA compound.

<u>Table S1</u>

<u>Topological analysis performed via QTAIM for the crystal structures of 3-(2-amino-2-oxoethyl)-5-methylhexanoic acid, all data are in a.u.</u>

$\rho(r_{bcp})$	$\nabla^2 \rho(r_{bcp})$	$V(r_{bcp})$	$G(r_{bcp})$	$\mathrm{H}(r_{bcp})$	Interactions
0.0251	0.0929	-0.0187	0.0209	0.0023	N5-H6…O4
0.0211	0.0779	-0.0146	0.0170	0.0024	N5-H7…O1
0.0505	0.1411	-0.0487	0.0420	-0.0067	O2-H3…O1
	ρ(^r _{bcp}) 0.0251 0.0211 0.0505	$\rho(r_{bcp})$ $\nabla^2 \rho(r_{bcp})$ 0.02510.09290.02110.07790.05050.1411	$\rho(r_{bcp})$ $\nabla^2 \rho(r_{bcp})$ $V(r_{bcp})$ 0.02510.0929-0.01870.02110.0779-0.01460.05050.1411-0.0487	$\rho({}^{r}bcp)$ $\nabla^{2}\rho(r_{bcp})$ $V({}^{r}bcp)$ $G({}^{r}bcp)$ 0.02510.0929-0.01870.02090.02110.0779-0.01460.01700.05050.1411-0.04870.0420	$\rho(r_{bcp})$ $\nabla^2 \rho(r_{bcp})$ $V(r_{bcp})$ $G(r_{bcp})$ $H(r_{bcp})$ 0.02510.0929-0.01870.02090.00230.02110.0779-0.01460.01700.00240.05050.1411-0.04870.0420-0.0067

Geometrical parameters of the 3-(2-amino-2-oxoethyl)-5-methylhexanoic acid.

Bond lengths (Å) DF	Γ/XRD		
01-C9	1.259/1.219 (6)	C18-C25	1.541/1.463(13)
C8-O2	1.351/1.313(7)	C21-C25	1.535/1.508(14)
C8-O4	1.209 /1.204(8)	C8-C10	1.508/1.494(10)
N5-C9	1.368/1.303(9)	C9-C15	1.528/1.502(8)
C13-C18	1.543/1.514(10)	C10-C13	1.551/1.539(10)
C13-C15	1.540/1.539(11)		
Bond angles (°) DFT /	/XRD		
O4-C8-O2	122.4/122.6(7)	C25-C18-C13	117.4/118.4(8)
O4-C8-C10	125.3/123.9(6)	C18-C25-C21	112.3/114.7(8)
O2-C8-C10	112.2/113.5(6)	C18-C25-C27	109.8/107.5(11)
O1-C9-N5	122.2/122.3(5)	C9-C15-C13	114.1/114.9(5)
O1-C9-C15	122.2/120.2(6)	C21-C25-C27	110.6/107.2(10)
N5-C9-C15	115.3/117.5(5)	C18-C13-C15	109.8/108.8(6)
C8-C10-C13	113.5/116.7(5)	C10-C13-C15	112.0/111.3(5)
C18-C13-C10	110.4/112.4(6)		
Dihedral angle (°) DF	T /XRD		
O4-C8-C10-C13	-88.9/-119.1(7)	C18-C13-C15-C9	154.0/150.2(5)
O2-C8-C10-C13	90.5/58.9(8)	C10-C13-C15-C9	-82.7/-85.4(6)
C8-C10-C13-C18	-179.0/176.3(6)	C10-C13-C18-C25	60.5/68.4(10)
C8-C10-C13-C15	58.0/53.9(8)	C15-C13-C18-C25	-175.3/-167.9(7)
O1-C9-C15-C13	-31.7/-60.4(7)	C13-C18-C25-C21	58.7/60.8(13)
N5-C9-C15-C13	153.0/119.6(6)	C13-C18-C25-C27	-177.6/179.9(8)

<u>Calculated scaled wave numbers, observed IR and Raman bands and assignment of 3-(2-amino-2-oxoethyl)-5-methylhexanoic acid.</u>

$\frac{2 \text{ oxocury() 5 metrymexanore deta:}}{\text{B3L VP/6-311G++(d n)}} \qquad v(IR) v(Raman) \text{Assignments }^{a}$								
D.	IR	0 ((u .p)	v(IIC)	v(Ixaiiiaii)				
$v (cm^{-1})$	intensity	Raman activity	(cm^{-1})	(cm^{-1})				
3612	70.901	116.0642	3440	-	vO(2)-H(3) (100)			
3554	31.8096	52.1058	3366	3366	vN(5)-H2(6,7) (100)			
3437	33.8974	158.4244	3219	3215	vN(5)-H2(6,7) (100)			
2995	12.4581	53.9274	-	-	vC(10)-H2(11,12) (97)			
2972	33.12	54.4869	-	-	vC(21)-H3(22,23,24) (91)			
2964	53.6399	123.5973	2960	2961	vC(27)-H3(28,29,30) (83)			
2050	60 0862	72 8202		2050	vC(21)-H3(22,23,24) (48)			
2939	00.0802	13.0392	-	2939	vC(27)-H3(28,29,30) (40)			
					vC(21)-H3(22,23,24) (10)			
2956	19.9134	4.7642	2955	2955	vC(15)-H2(16,17) (11)			
					vC(13)-H(14) (58)			
2953	5.7175	20.5157	-	2949	vC(21)-H3(22,23,24)(24)			
					vC(27)-H3(28,29,30) (64)			
2940	4.2926	33.837	-	2938	VC(15)-H2(16,17)(80)			
					$VC(13)-\Pi(14)(11)$ VC(10) H2(12,11)(81)			
2933	9.3423	116.375	2930	-	vC(13)-H(14)(13)			
2910	38 3656	58 1247	2916	_	vC(18)-H2(19,20)(71)			
2902	17 817	274 6999	2910	_	vC(21)-H3(22,23,24)(75)			
2702	17.017	274.0999	2701		vC(21)-H3(22,23,24) (11)			
2896	34.1761	40.1875	-	-	vC(27)-H3(28,29,30) (78)			
2881	8.4607	123.5375	2879	-	vC(25)-H(26) (84)			
2873	24.3515	67.7387	2874	2875	vC(18)-H2(19.20) (97)			
1725	390.0101	9.646	1702	1701	vC(8)=O(4) (82)			
1688	226.8163	9.1042	1667	1668	vC(9)=O(1)(79)			
1564	89.1245	2.7225	_	1551	$\delta N(5)-H2(6.7)$ (83)			
1 4 5 4	15 101	0.0507	1460		$\delta C(21)$ -H3(22,23,24) (49)			
1454	15.181	0.3587	1460	-	δC(27)-H3(28,29,30) (26)			
1447	5 5011	11 444		1440	δC(21)-H3(22,23,24) (19)			
144/	5.5011	11.444	-	1449	δC(27)-H3(28,29,30) (38)			
					δC(27)-H3(28,29,30) (29)			
1437	3.5032	0.3825	-	1435	δC(21)-H3(22,23,24) (21)			
					δC(18)-H2(19,20) (15)			
1434	1.8608	14.832	1431	1432	δC(27)-H3(28,29,30) (46)			
-			-	-	$\delta C(21) - H3(22,23,24)(27)$			
1428	11.2586	2.2754	1426	1427	$\delta C(10) - H2(11, 12) (64)$ SC(18) H2(10, 20) (10)			
1424	0 4422	2 2615			OC(18)-H2(19,20)(10) SC(18)-H2(10,20)(44)			
1424	0.4452	5.2015 2.666	-	-	$O(15)-\Pi^2(19,20)$ (44) $SC(15)$ $U^2(14,17)$ (92)			
1403	3.7033	3.000	-	1405	$0 \cup (15) - H2(10, 17) (82)$ SC(21) H2(22, 22, 24) (46)			
1369	10.7188	0.1412	1368	1367	$\delta C(27) - H3(28.29.30) (37)$			
1340	13.73	0.36103	1341	1339	δC(21)-H3(22,23,24) (37)			

					δC(27)-H3(28,29,30) (47)
					δC(25)-H(26) (22)
1315	18 5725	2 8269	1312	1311	δC(10)-H2(11,12) (10)
1515	40.3723	2.8209	1312	1311	δO(2)-H(3) (14)
					vC(8)-O(2)(11)
1272	46.0338	4.5367	1243	1245	δC(9)-N(5) (12)
1174	103 2899	1 3971	1169	1170	δO(2)-H(3) (18)
11/4	105.2077	1.5771	1107	1170	δC(15)-H2(16,17) (21)
	10.0004				δC(21)-H3(22,23,24) (15)
1144	10.0084	2.7744	1136	1137	$\delta C(27) - H3(28,29,30) (12)$
					vC(25)-C(18)(11)
1122	39.8068	3.6323	-	-	$\delta C(15) - H2(16, 17)(14)$
1112	13 9083	3 9656	1112	1112	$\delta C(27) - H3(28, 29, 30)(12)$
1112	15.7005	5.7050	1112	1112	$\delta N(5)-H^{2}(6,7)$ (33)
1056	17.6148	6.2216	1054	1053	vC(9)-N(5)(21)
973	16 929	1 6342	974	977	vC(18)-C(13)(13)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000	1.00.12	<i>,</i> ,,	211	$\delta C(21)$ -H3(22 23 24) (11)
929	1.3727	3.6284	927	931	$\delta C(27)$ -H3(28,29,30) (29)
					vC(21)-C(25) (15)
026	1 0150	1 1096	021		vC(27)-C(25) (24)
920	1.9139	4.1980	921	-	vC(25)-C(28) (29)
896	1 3223	0 5884	895	896	δC(21)-H3(22,23,24) (24)
070	1.5225	0.5001	075	070	δC(27)-H3(28,29,30) (17)
886	1.6389	2.0727	883	-	vC(8)-C(10) (15)
					vC(15)-C(13)(13)
					vC(8)-O(2)(10)
865	2.0423	3.1983	-	-	vC(8)-C(10)(17) vC(10)C(13)(20)
					$\delta C(15) - H^2(16, 17) (16)$
851	1 3855	6 0553	848	_	vC(8)-O(2)(13)
001	1.5055	0.0000			$\delta C(18) - H2(19.20) (12)$
816	3.2241	0.4641	812	810	vC(9)-C(15) (11)
					vC(21)-C(25) (27)
771	2 55 1 9	1 0662		770	vC(25)-C(27) (10)
//1	5.5540	1.9003	-	//0	vC(25)-C(18) (15)
					δC(18)-H2 (19,20) (10)
713	48,7772	4.6316	718	717	δC(8)-O(2) (38)
,			,		vC(10)-C(13)(15)
651	14.4062	2.784	653	650	$\delta C(5) - N(9) (17)$
					$\delta C(9) = O(1)(17)$ $\delta C(8) = O(4)(26)$
598	34.5304	1.2808	595	597	$\tau O(2) - H(3) (32)$
	· · · ·				$\delta C(8) = O(4) (10)$
568	24.294	1.2541	-	565	$\tau H(6)-N(5)-H(7)(17)$
	02 40 42	1 1000		552	$\delta C(8) = O(4) (21)$
222	95.4842	1.1898	-	222	$\tau O(2)-H(3)$ (46)
513	27 1171	0 8682	512	512	δC(9)=O(1) (18)
515	<i>41</i> .11/1	0.0002	512	512	$\delta C(25)$ -C(18)-C(13) (13)
385	27.4428	1.403	-	382	$\delta C(9)$ -N(5) (10)

					$\delta C(18)$ -C(25)-C(21) (12)
					δC(27)-C(25)-C(21) (29)
					$\delta C(9)$ -N(5) (14)
345	0.3553	1.4913	-	344	δC(8)-O(2) (10)
					$\delta C(10)$ -C(15)-C(18)-C(13) (32)
254	0 1887	1 7422		252	δC(21)-H3(22,23,24) (10)
234	0.1882	1./422	-	232	δC(15)-C(13)-C(18) (16)
					δC(21)-H3(22,23,24) (14)
236	0.7314	1.3663	-	-	δC(27)-H3 (28,29,30) (64)
					δC(21)-C(25)-C(27) (21)
218	0 1036	0.0120		216	δC(21)-H3(22,23,24) (14)
210	0.1030	0.0129	-	210	δC(27)-H3(28,29,30) (64)
42	7.6319	0.9935	-	-	$\tau N(5)-C(9)$ (60)

^av-stretching; δ -in-plane deformation and out-of-plane deformation; τ -torsion; potential energy distribution is given in brackets (%) in the assignment column.

Donor(i)	Type	$\frac{15 \text{ OI IIIC III}}{\text{ED/e}}$	Accentor(i)	Type	ED/e	$E(2)^{a}$	E(i)-E(i) ^b	F(i i)°
$\frac{01-C9}{01-C9}$	<u>σ</u>	1 99423	N5-C9	$\frac{rypc}{\sigma^*}$	0.06693	$\frac{D(2)}{0.80}$	1 45	$\frac{1}{0.031}$
01-07	0	1.77425	C9-C15	σ*	0.00075	1.03	1.45	0.034
01-C9	π	1 08752	01-09	0 π*	0.00010	1.03	0.51	0.034
01-07	π	1.00610	C^{2}	π σ*	0.23724	1.05	1 / 9	0.022
04-C8	0 -	1.99019	$C_0 - C_{10}$	0 ~*	0.03080	0.51	0.47	0.045
04-08	π	1.99015	01-09	л _*	0.23724	0.31	0.47	0.031
-		-	04-08	π*	0.21238	0.//	0.40	0.016
N5-C9	σ	1.99480	01-09	σ*	0.04383	0.71	1.39	0.028
-		-	C13-C15	σ*	0.01739	0.77	1.21	0.027
C8-C10	σ	1.97926	O4-C8	σ*	0.02304	1.14	1.26	0.034
-		-	C10-C13	σ^*	0.02160	0.74	1.02	0.025
-		-	C13-C18	σ^*	0.01806	1.78	1.04	0.039
C9-C15	σ	1.97941	O1-C9	σ^*	0.04383	0.74	1.18	0.027
			C13-C15	σ*	0.01739	0.68	1.01	0.023
LPO1	σ	1.97714	N5-C9	σ*	0.06693	1.57	1.13	0.038
-		-	C9-C15	σ*	0.06616	2.34	1.05	0.045
LPO1	π	1.86742	N5-C9	σ*	0.06693	24.75	0.70	0.120
			C9-C15	σ*	0.06616	19.40	0.62	0.100
LPO2	σ	1.97696	O4-C8	σ*	0.02304	7.04	1.24	0.083
LPO2	π	1.81759	O4-C8	π*	0.21238	45.37	0.34	0.112
LPO4	σ	1.97713	O2-C8	σ*	0.09936	1.38	1.05	0.035
-	-	-	C8-C10	σ*	0.05680	2.69	1.69	0.049
LPO4	π	1.85504	O2-C8	σ^*	0.09936	32.95	0.62	0.129
-		-	C8-C10	σ^*	0.05680	16.77	0.66	0.096
LPN5	σ	1.76508	O1-C9	σ*	0.23724	3.43	0.84	0.050
-		-	O1-C9	π*	0.01084	35.29	0.37	0.101

Second-order perturbation theory analysis of Fock matrix in NBO basis corresponding to the intramolecular bonds of the title compound.

Bond(A-B)	ED/e ^a	EDA%	EDB%	NBO	s%	p%
σO1-C9	1.99423	65.32	34.68	0.8082(sp1.70)O+	37.04	62.84
-	-0.99528	-	-	0.5889(sp2.36)C	29.71	70.11
πO1-C9	1.98752	70.17	29.83	0.8377(sp23.39)O+	4.09	95.79
-	-0.43597	-	-	0.5461(sp33.92)C	2.85	96.70
σO4-C8	1.99619	65.21	34.79	0.8076(sp1.43)O+	41.05	58.82
-	-1.09905	-	-	0.5898(sp1.95)C	33.86	65.98
π04-C8	1.99013	70.56	29.44	0.8400(sp1.00)O+	0.01	99.87
-	-0.39615	-	-	0.5426(sp99.99)C	0.01	99.47
σN5-C9	1.99480	61.52	38.48	0.7844(sp1.60)N+	38.49	61.45
-	-0.84039	-	-	0.6203(sp2.18)C	31.44	68.46
σC8-C10	1.97926	49.01	50.99	0.7001(sp1.55)C+	39.15	60.82
-	-0.65949	-	-	0.7141(sp2.94)C	25.37	74.56
σC9-C15	1.97941	48.51	51.49	0.6965(sp1.78)C+	35.93	64.04
-	-0.63444	-	-	0.7176(sp2.85)C	25.94	74.00
n1O1	1.97714	-	-	sp0.70	58.88	41.11
-	-0.68206	-	-	-	-	-
n2O1	1.86742	-	-	sp99.99	0.03	99.90
-	-0.25214	-	-	-	-	-
n1O2	1.97696	-	-	sp1.22	45.05	54.91
-	-0.63366	-	-	-	-	-
n2O2	1.81759	-	-	sp99.99	0.04	99.90
-	-0.34337	-	-	-	-	-
n1O4	1.97713	-	-	sp0.70	58.97	41.01
-	-0.71064	-	-	-	-	-
n2O4	1.85504	-	-	sp99.99	0.02	99.90
-	-0.27818	-	-	-	-	-
n1N5	1.76508	-	-	sp17.93	5.28	94.70
-	-0.28851	-	-	-	-	-

Table S5			
NBO results showing the formation	of Lewis and	non-Lewis	orbitals.

^a ED/e is expressed in a.u.

<u>raftial</u> C	<u>Inarges in Isolated a</u>	and embedded molect		
		Isolated	Enbedded	Δ%
1	01	-0.64216	-0.86436	34.60239
2	O2	-0.65783	-0.70026	6.45125
3	H2	0.453281	0.533309	17.65527
4	O4	-0.60573	-0.68518	13.11649
5	N5	-1.00406	-0.91446	8.923734
6	H1A	0.438875	0.44947	2.414127
7	H1B	0.43395	0.453312	4.461804
8	C8	0.797366	0.882077	10.62385
9	C9	0.855179	0.982773	14.92015
10	C10	-0.18827	-0.32223	71.15101
11	H8A	0.046685	0.075207	61.09457
12	H8B	0.01742	0.044151	153.4501
13	C13	0.448429	0.480093	7.061096
14	H1	-0.08142	-0.07813	4.047947
15	C15	-0.43193	-0.61299	41.91899
16	H6A	0.074392	0.157918	112.2782
17	H6B	0.098332	0.152924	55.51804
18	C18	-0.23558	-0.21247	9.810131
19	H2A	0.044388	0.055196	24.34892
20	H2B	0.036963	0.0518	40.14014
21	C21	-0.22882	-0.22898	0.070361
22	H5A	0.035764	0.029397	17.80282
23	H5B	0.047476	0.04427	6.752886
24	H5C	0.047986	0.043446	9.461093
25	C25	0.389423	0.378975	2.682944
26	H3	-0.08958	-0.08463	5.529198
27	C27	-0.25239	-0.24936	1.202098
28	H4A	0.06072	0.065769	8.315217
29	H4B	0.053721	0.04795	10.74254
30	H4C	0.037416	0.025002	33.17832
	Group A	-0.0129	0.029946	332.0496
	Group B	0.081785	0.106735	30.50682
	Group C	0 101715	0 071844	29 36735

<u>**Table S6**</u> Partial Charges in isolated and embedded molecule

<u>Table S7</u> <u>Comparison of linear refractive index for 3-(2-amino-2-oxoethyl)-5-methylhexanoic acid</u> <u>crystal with experimental results for others organic crystals.</u>

	n
3-(2-amino-2-oxoethyl)-5-methylhexanoic acid (Present work)	1.455
1-(5-chlorothiophen-2-yl)-3-(2,3-dimethoxyphenyl)prop-2-en-1-one(CTDMP) ^{84,85}	1.594
(2E)-3[4(methylsulfanyl)phenyl]-1-(4-nitrophenyl)prop-2-en-1-one(4N4MSP) ^{9,85}	1.360
(2E)-1-(4-bromophenyl)-3-[4(methylsulfanyl)phenyl]prop-2-en-1-one(4Br4MSP) ^{9,85}	1.363
(2E)-1-[3-bromophenyl)-3(2E)-1-(3-bromophenyl)-3-[(4methylsulfanyl)phenyl]-	1 265
prop-2-en-1-one(3Br4MSP) ^{9,85}	1.303

Molecular	docking	values	of	AOEMHA	with	target	proteins	(a)	4BDU,	(b)	4DBS,	(c)
4DBW. (d)) 4FAL at	nd (e) 4]	FAM			-	-					

Protein (PDB ID)	Bond distance (Å)	Bonded residues	Estimated inhibition constant (µm)	Binding energy (kcal/mol)	Intermolecular energy (kcal/mol)	Reference RMSD (Å)
4BDU	2.5	SER 271	236.05	-4.95	-7.04	47.401
	2.1	ARG 276				
	2.0	LYS270				
	1.8	TYR272				
4DBS	1.7	LYS270	927.65	-4.14	-6.23	30.006
	2.3	ARG276				
	2.1	ARG276				
4DBW	2.4	LYS270	339.39	-4.73	-6.82	30.052
	1.8	LYS270				
	2.4	ARG276				
	1.8	ARG276				
	2.2	TYR272				
4FAL	2.4	LYS270	484.06	-4.52	-6.61	3.191
	2.2	SER271				
	1.8	LYS270				
	2.0	ARG276				
	2.2	ARG276				
	2.4	TYR272				
4FAM	1.8	ARG276	377.69	-4.67	-6.76	15.296
	2.4	TYR272				
	2.0	LYS270				
	2.3	LYS270				
	2.3	GLN222				