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1. General information

'H NMR and '3C NMR spectra were recorded on Bruker-Advance DPX
400 MHz spectrometer, using de-DMSO as the solvent. The chemical shifts
were recorded in ppm. Mass spectra (MS) were performed from Agilent-6110
mass spectrometer. Fluorescent spectra were obtained on Spectrofluorometer
FS5. UV—vis spectra were measured using U3010-vis spectrophotometer. The
pH levels were carried out with FE20. TLC analysis was performed with
Haiyang silica gel F 254 plate and column chromatography was conducted over
Haiyang silica gel (type: 200-300 mesh, 300400 mesh).

All chemical reagents and solvents (analytical grade) were purchased from
Energy Chemical and Changhai Wohua Chemical Co. Ltd., and used without further
purification. Double distilled water was used through all experiments. Metal salts
were obtained from Sinopharm Chemical Co. Ltd., including AgNO;, CdCl,, Cs,COs3,
FeCl3, SnCl,-2H,0, CaCl,, FeCl,-4H,0, CuCl,-2H,0, MgCl,-6H,0, CoCl,-6H,0,
ZnCl,, Pb(NOs),, PdCl,, NaCl, AICl; and MnCl,.

2. General method for the synthesis of PTAHN

The synthetic methods of probe were summarized in Scheme S1. Probe

PTAHN was synthesized according to the published procedure.!-3
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Scheme S1: Synthetic route of PTAHN

Synthesis of compound (A)
In a 100 mL round bottom flask, 5-amino-4, 6-dichloropyrimidine (5.00 g, 30

mmol) and 1-naphthylamine (8.58 g, 60 mmol) were added and dissolved in methanol
(50 mL), then concentrated HCl (5 mL, 60 mmol) were added. The mixture was
stirred at 65 °C for 5 d. After cooling to the room temperature, the solvent was
evaporated under reduced pressure. And then 1 M NaOH was added, the residue was
extracted with ethyl acetate three times. The organic phase was washed with 1.2 M
HCI and saturated saline, and then evaporated to obtain the crude produce. The crude
product was recrystallized with CH;OH/H,O (v/v, 1:5) to afford the compound (A)

6-chloro-N*-(naphthalen-1-yl)pyrimidine-4,5-diamine (A): Pale violet powder
(5.75 g, 71% yield). '"H NMR (400 MHz, DMSO-dg) ¢ 8.92 (s, 1H), 7.99 — 7.94 (m,
1H), 7.92 — 7.87 (m, 1H), 7.85 — 7.81 (m, 1H), 7.63 (s, 1H), 7.58 — 7.48 (m, 4H), 5.52
(s, 2H). 3BC NMR (100 MHz, DMSO-dg) 6 151.62, 145.58, 138.88, 135.45, 134.42,
129.88, 128.59, 126.47, 126.33, 126.17, 126.15, 124.96, 123.97, 123.69. ESI-MS m/z:



[M-H]- calcd. for C4H;;CIN4 269.0, found 269.0.

'H NMR (DMSO)
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Fig. S1. NMR and MS spectrum of (A)

Synthesis of compound (B)
Compound (A) (1.00 g, 3.7 mmol), thiophene-2-carboxylic acid (2.37 g, 18.5

mmol), and DTAC (0.10 g, 10 % mmol) were dissolved in 25 mL of POCl;, then PPA
(5.00 g, 14.8 mmol) was added. The reaction mixture was stirred at 80 °C for 72 h.
After the completion of reaction, the solvent was evaporated, and then the residue was
purified by column chromatography on silica gel using CH;0OH/CH,Cl, (v/v, 1/250) to
afford pure product (B).

6-Chloro-9-(naphthalen-1-yl)-8-(thiophen-2-yl)-9H-purine (B): Yellowish solid
(0.56 g, 42% yield). '"H NMR (400 MHz, DMSO-d;) 0 8.62 (s, 1H, H-C=N), 8.34 (d,
J=28.4 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.94 — 7.90 (m, 1H), 7.82 — 7.73 (m, 2H),
7.67 — 7.62 (m, 1H), 7.51 — 7.45 (m, 1H), 7.30 (d, J = 9.5 Hz, 1H), 6.98 — 6.94 (m,
1H), 6.85 — 6.81 (m, 1H). 13C NMR (100 MHz, DMSO-dy) 6 155.70, 152.28, 150.71,
148.35, 134.46, 132.65, 131.73, 130.72, 130.57, 130.54, 130.26, 129.09, 128.77,
128.35, 127.74, 126.50, 122.33. ESI-MS m/z: [M+H]* calcd. for C9H;;CIN,S 363.0,
found 362.9.

1H NMR (DMSO)
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Fig. S2. NMR and MS spectrum of (B)

Synthesis of compound (1)
Compound (B) (0.29 g, 0.8 mmol) was dissolved in 20 mL of methanol, and then

hydrazine was added. The mixture was stirred at 65 °C for 3 h. After the reaction
completed (monitored by TLC), the reaction mixture was cooled to room temperature.
A yellowish powder was collected with filtration, rinsed with MeOH and dried under
reduced pressure.

6-Hydrazinyl-9-(naphthalen-1-yl)-8-(thiophen-2-yl)-9H-purine (1): Yellowish
powder (0.20 g, 70% yield). 'H NMR (400 MHz, DMSO-dg) ¢ 9.25 (s, 1H), 8.24 (d, J
=6.9 Hz, 1H), 8.12 (d, /= 6.6 Hz, 1H), 8.06 (s, 1H), 7.76 (d, J=5.1 Hz, 1H), 7.72 (d,
J=17.0 Hz, 1H), 7.55 (s, 1H), 7.51 (s, 1H), 7.45 — 7.40 (m, 1H), 7.06 — 7.02 (m, 1H),
6.81 (s, 1H), 6.52 (s, 1H), 4.65 (s, 2H). '*C NMR (100 Hz, DMSO-ds) J 153.47,
144.60, 134.42, 132.03, 131.54, 131.01, 130.62, 129.69, 129.02, 128.46, 128.21,
128.14, 127.90, 127.49, 126.43, 122.23, 118.09, 79.63. ESI-MS m/z: [M+H]*
calcd.for C;9H4N¢S 359.1, found 359.0.

'H NMR (DMSO)
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Fig. S3. NMR and MS spectrum of (1)

Synthesis of PTAHN
Compound (1) (200 mg, 0.558 mmol) and 2-hydroxy-1-naphthaldehyde (144 mg,

0.837 mmol) were dissolved in ethanol (30 mL), and the mixture was refluxed for 2 h.
After cooling to room temperature, the solvent was removed under reduced pressure.
Then the crude product was purified by recrystallization to produce yellow powder
(200 mg, 70%). '"H NMR (400 MHz, DMSO-dg) 6 12.62 (s, 1H), 12.14 (s, 1H), 9.40
(s, 1H), 8.34 — 8.23 (m, 2H), 8.20 — 8.13 (m, 2H), 7.96 — 7.86 (m, 3H), 7.81 — 7.76 (m,
1H), 7.66 — 7.58 (m, 3H), 7.53 — 7.39 (m, 3H), 7.33 (d, /= 8.9 Hz, 1H), 7.18 (d, J =
9.5 Hz, 1H), 7.02 (s, 1H). 13C NMR (100 MHz, DMSO-ds) 6 157.16, 152.93, 146.77,
134.50, 132.24, 132.07, 131.31, 131.17, 130.77, 130.68, 129.43, 129.03, 128.56,
128.34, 128.10, 127.97, 127.53, 126.45, 123.86, 122.33, 120.68, 119.98, 118.93,
109.31. ESI-MS m/z: [M+H]" caled for C30H,N¢OS 513.1, found 513.0.

'H NMR (DMSO)
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Fig. S4. NMR and MS spectrum of PTAHN

3. Binding association constant

The limit of detection (LOD) of PTAHN for Zn*" was determined from the
following equation: LOD = 3Sbl1/S, Sbl is the standard deviation of the blank
solution; S is the slope of the calibration curve. From the Fig. S5 we get the slope (S)
= 30053.57143, Standard deviation Sb1 = 616.8737. Thus, using the formula we get
the LOD = 61.6 nM.
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Fig. S5. Calibration curve for fluorescence titration of PTAHN with Zn?"

The association constant of PTAHN-Zn** complex was determined as



1.566x10° M-! on the basis of Benesi-Hilderband equation (Fig. S6).
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Fig. S6. Benesi-Hildebrand plot of PTAHN using 1:1 stoichiometry for association
between PTAHN and Zn?* ion.

4. Spectroscopic responses of PTAHN-Zn?* towards anions

In addition to the properties of PTAHN for recognition of cations, the PTAHN-
Zn** complex was also applied as a metal-based sensor for detecting anions.
Various anions (50 uM), such as F-, NO,,, CH;COO-, S,05>, SO4*, HPO,*, SOs*,
HS-, CO;*, H,PO,, HSOs5, S, NO,, I, HCO;5, and Br, was tested for their
interfering effects in the fluorescence spectrum of PTAHN-Zn?" complex (50 uM).
As shown in Fig. S7, the aforementioned anions induced almost negligible
fluorescence changes. However, upon the addition of EDTA to the solution of
PTAHN-Zn?*, the fluorescence intensity was reduced immediately, which could be

ascribed to the removal of Zn?* by EDTA.
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Fig. S7. Fluorescent spectra of PTAHN-Zn?* with the addition of various anions in in
DMSO/H;O0 solution (9/1, v/v, pH 7.4, HEPES buffer, 0.2 mM)

5. Solvent screening

The solvent effect on the fluorescence intensity of PTAHN-Zn?** was also
investigated. The solvents, including DMSO, THF, acetone, EtOH, MeOH, and
CH;CN were selected to prepare PTAHN solution (10 uM). Then upon the addition
of Zn*" (50 uM, 5 equiv) to each PTAHN solution, the fluorescence emission
intensity was tested in the same manner. As displayed in Fig. S8, DMSO was found as
the optimized solvent for the enhanced fluorescence emission intensity of PTAHN-

Zn%" at 501 nm.
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Fig. S8. The solvent effect of the fluorescence intensity of PTAHN-Zn?* complex



6. '"H NMR titration experiments

To better explore binding mode of PTAHN with Zn?* ion, 'H NMR spectra of
probe PTAHN with Zn?* ion were performed in DMSO-ds. When 1.0 and 5.0 equiv.
Zn?" ion was separately added to PTAHN, the ~OH signal at 12.60 was shifted to
13.02 ppm and the HC=N signal at ¢ 9.37 ppm unfiled shifted to 9.63 ppm. At the
same time, the proton of pyrimidine ring at 8.25 downfield shifted to 8.23 ppm, which
support the notion that the pyrimidine nitrogen atom participated in binding with Zn?*
ion.
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Fig. S9. '"H NMR spectra of (A) PTAHN in the presence of (B) 1.0, (C) 5.0, equiv. of
Zn" in DMSO-dj

7. The response rate of PTAHN towards Zn”" ion

The response rate of PTAHN towards Zn?" has been investigated.
As the figure shown below, the response time of PTAHN towards Zn?*
depends on the concentration of Zn?* ion. The response time of PTAHN

towards Zn?" reduced with the incremental addition of the concentration



of Zn?* ion. According to the Fig. S10 (b), the pseudo-first order rate

constant was determined to be 0.26565 min’!.
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Fig. S10. (a) The response rate of PTAHN towards different concentrations of Zn*

ion; (b) Lnc(PTAHN-Zn?") towards response time (min)

8. Comparison with recently reported probes

Some comparison of reported fluorescence probes for the detection of Zn?*
ions based on Schiff base were listed in Table S1, probe PTAHN exhibited
some advantages while few parameters of other probes were better than this
work. First, probe PTAHN displayed a “turn-on” fluorescence response
towards Zn?* ion in 30s and with an obvious color change from the colorless to
yellow. Besides, the LOD value of probe PTAHN towards Zn?>' appeared
sensitivity in the nM level while few probes in this table showed LOD values in
this range, which indicated high sensitivity of PTAHN towards the Zn?' ion.
Importantly, it was the beneficial characteristics that our probe could be
successfully used for imaging the intracellular Zn?" in living cells, as well as
monitoring Zn?" in the solid state.

Table S1. Some comparison of reported fluorescence probes for Zn>* ion

Chemical structure Ex/Em LOD Solvent Application | Ref. |
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9. Cytotoxicity test

The cytotoxicity of PTAHN against to the HepG2 cells was measured by MTT

assay (Fig. S11). HepG2 cells were seeded into a 96-well plate at a density of about

7000 cells per well. After the cells were attached at 37 °C under a humidified

atmosphere of 5% CO, in air, 100 pL fresh culture medium with different PTAHN

concentrations (0, 2, 4, 6, 8, 10, 12, 14, 16 and 18 pM) were added and incubated for

24 h. Subsequently, 10 uL. MTT reagent was added into each well and incubated for

another 3 h. As seen in Figure S11, 10 uM of probe PTAHN had no obvious effect on

HepG2 cells growth after 24 h.

- -
(=] i
(=] (=]
1 1

cell viability(% of control)
(4]
L=

04

Y % © D 0 O

PTAHN(uM)

NN

Fig. S11. Cytotoxic effect of probe PTAHN on HepG2 cells. Cells were treated
with different PTAHN concentrations and its survivability was measured by MTT

assay

10. DFT Calculation




Geometry optimization of PTAHN and PTAHN-Zn?* complex were performed
by DFT/B3LYP method using Gaussian 09 software.!3-14 lanl2dz basis set was applied
to Zn** while 6-31+g(d) basis set was used to other elements (C, O, H, N, S).
Vibrational frequency calculations were performed to confirm that all structures were
at the local minima (the number of the imaginary frequency is zero) on the potential

surfaces.
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