SUPPLEMENTARY FILE

Synthesis of the First 2-Hydroxyanthraquinone Substituted Cyclotriphosphazenes and Their Cytotoxic Properties

Gönül Yenilmez Çiftçi*a, Nagihan Bayık a, Esra Tanrıverdi Eçik^b, Elif Şenkuytu^b,

Masuk Aksahin^c, Tuba Yıldırım^d

*Correspondence:yenilmez@gtu.edu.tr

^aDepartment of Chemistry, Faculty of Sciences, Gebze Technical University, Gebze, Kocaeli, Turkey

^bDepartment of Chemistry, Faculty of Sciences, Ataturk University, 25240, Erzurum, Turkey

^cDepartment of Biotechnology, Graduate School of Natural and Applied Sciences, Amasya University, 05100, Amasya, Turkey

^dDepartment of Biology, Faculty of Arts and Sciences, Amasya University, 05100, Amasya, Turkey

* Corresponding author

Phone: +90 262 6053011 Fax: +90 262 6053005

E-mail: yenilmez@gtu.edu.tr

CONTENTS

Contents of Figures

Figure S1. MALDI-MS spectra of Compound 6	4
Figure S2. ¹ H NMR spectra of Compound 6 in CDCl ₃	4
Figure S3. ¹³ C NMR spectra of Compound 6 in DMSO-d ₆	5
Figure S4. ³¹ P NMR decoupled spectra of Compound 6 in CDCl ₃	5
Figure S5. FT-IR spectra of Compound 6	6
Figure S6. MALDI-MS spectra of Compound 7	7
Figure S7. ¹ H NMR spectra of Compound 7 in CDCl ₃	7
Figure S8. ¹³ C NMR spectra of Compound 7 in DMSO-d ₆	8
Figure S9. ³¹ P NMR decoupled spectra of Compound 7 in CDCl ₃	8
Figure S10. FT-IR spectra of Compound 7	9
Figure S11. MALDI-MS spectra of Compound 8	10
Figure S12. ¹ H NMR spectra of Compound 8 in CDCl ₃	10
Figure S13. ¹³ C NMR spectra of Compound 8 in DMSO-d ₆	11
Figure S14. ³¹ P NMR decoupled spectra of Compound 8 in CDCl ₃	11
Figure S15. FT-IR spectra of Compound 8	12
Figure S16. MALDI-MS spectra of Compound 9	13
Figure S17. ¹ H NMR spectra of Compound 9 in CDCl ₃	13
Figure S18. ¹³ C NMR spectra of Compound 9 in DMSO-d ₆	14
Figure S19. ³¹ P NMR decoupled spectra of Compound 9 in CDCl ₃	14
Figure S20. FT-IR spectra of Compound 9	15
Figure S21. Graphics of the concentrations values of compounds applied in the Me	CF-7 and
MCF12A cell lines according to viability (%) with MTT method	16
Figure S22. MTT analysis results of compounds in cells. Graphics of the concentre	ations of
compounds applied in the DLD1 and CCD-18CO cell lines according to absorbance w	vith MTT
method	18

Contents of Tables

Table S1	. Selectivity	of the	cytotoxicity	of anthraqui	none d	derivatives	compounds	to two c	ancer
cells as co	ompared with	h norma	ıl cells						20

Figure S1. MALDI-MS spectra of Compound 6

Figure S2. ¹H NMR spectra of Compound 6 in CDCl₃

Figure S5. FT-IR spectra of Compound 6

Figure S7. ¹H NMR spectra of Compound 7 in CDCl₃

Figure S9. ³¹P NMR decoupled spectra of Compound 7 in CDCl₃

Figure S10. FT-IR spectra of Compound 7

Figure S12. ¹H NMR spectra of Compound 8 in CDCl₃

Figure S14. ³¹P NMR decoupled spectra of Compound 8 in CDCl₃

Figure S15. FT-IR spectra of Compound 8

Figure S17. ¹H NMR spectra of Compound 9 in CDCl₃

re S19. ³¹P NMR decoupled spectra of Compound 9 in CDCl₃

Figure S20. FT-IR spectra of Compound 9

Figure S21. Graphics of the concentrations values of compounds applied in the MCF-7 and MCF12A cell lines according to viability (%) with MTT method.

Figure S22. MTT analysis results of compounds in cells. Graphics of the concentrations of compounds applied in the DLD1 and CCD-18CO cell lines according to absorbance with MTT method

Compound No	IC ₅₀ (μM)ª					
compound no	MCF-7	MCF-12A	DLD-1	CCD-18Co		
1	20	20	40	20		
2	40	40	20	10		
3	10	5	40	2.5		
4	40	10	5	40		
5	20	2.5	20	40		
6	40	40	5	20		
7	2.5	40	40	10		
8	40	10	2.5	40		
9	10	5	10	40		

Table S1. Selectivity of the cytotoxicity of anthraquinone derivatives compounds to two cancer cells as compared with normal cells.

^aThe selectivity index is the ratio of the IC₅₀ values of the treatments on normal cells to those in the cancer cell lines.