Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

Two Anthracene Chromophores based Metal-Organic Frameworks for Gas Absorption and Promising Nitro Aromatic Sensing

Xiao-Li Hu,^{ab} Kang Wang,^{ab} Xiao Li,*^{ab} Qing-Qing Pan,^{ab} and Zhong-Min Su*^{abc}

^aSchool of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China. E-mail:huxiaoli1113@cust.edu.cn;

^b Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun. 130022, China;

^cJoint Sino-Russian Laboratory of Optical Materials and Chemistry, Changchun 130022, China Email: zmsu@nenu.edu.cn.

Fig. S1 (a) Tetranuclear Zn-cluster in 1. (b) and (c) The coordination modes of btb in 1 and 2.

Fig. S2 PXRD patterns for 1.

Fig. S3 PXRD patterns for 2.

Fig. S4 TG curves for 1 and 2.

Fig. S5 Emission spectra of btb and dia ligand.

	1	2
Formula	$C_{47}H_{30}N_4O_8Zn_2$	$C_{74}H_{44}Cd_2N_4NaO_{12}$
Mr	909.53	1428.92
Crystal system	triclinic	monoclinic
space group	P-1	C2/c
a, Å	9.797(4)	32.143(4)
b, Å	15.252(6)	10.3824(10)
c, Å	16.948(7)	32.772(4)
α, deg	75.387(7)	90
β, deg	73.275(7)	115.790(4)
γ, deg	85.170(7)	90
V,Å ³	2346.7(16)	9847.4(18)
Z	2	4
D_X , g cm ⁻³	1.287	0.964
μ, mm ⁻¹	1.075	0.480
Unique. reflns/R _{int}	0.0577	0.0545
$R_1 [I > 2\sigma(I)]$	0.0765	0.0721
wR ₂ (All data)	0.2153	0.2190
GOF	0.871	0.967

 Table S1 Crystallographic data and structure refinements for 1 and 2.

Tuble 52 Selected Solid lengths [1] and Selected angles [] for 1.				
Zn1-N1	2.021(6)	O3#3-Zn2-O1#2	153.2(3)	
Zn1-O2	1.945(4)	O3#3-Zn2-O9#2	92.47(16)	
Zn1-O5#1	1.951(4)	O3#3-Zn2-N3	78.3(3)	
Zn1-O9	1.934(4)	O9#2-Zn2-Zn2#2	84.6(3)	
Zn2-O1#2	1.984(6)	O9-Zn2-O7	41.34(12)	
Zn2-O3#3	1.969(4)	O9#2-Zn2-N3	88.19(18)	
Zn2-O7	2.156(5)	N3-Zn2-Zn2#2	144.8(3)	
Zn2-O9#2	2.109(4)	O2-Zn1-O5#1	120.92(18)	
Zn2-O9	2.074(5)	O9-Zn1-N1	110.48(19)	
Zn2-N3	2.327(8)	O9-Zn1-O5#1	109.68(18)	
O2-Zn1-N1	98.6(2)	O1#2-Zn2-O7	86.4(2)	
O5#1-Zn1-N1	107.4(2)	O1#2-Zn2-O9	109.5(2)	
O9-Zn1-O2	108.96(17)	O3#3-Zn2-Zn2#2	96.18(15)	
O1#2-Zn2-Zn2#2	106.59(19)	O3#3-Zn2-O7	89.50(19)	
O1#2-Zn2-O9#2	95.37(19)	O3#3-Zn2-O9	96.8(2)	
O1#2-Zn2-N3	74.9(3)	O7-Zn2-Zn2#2	130.37(15)	
O9-Zn2-N3	83.53(17)	O9#2-Zn2-O7	42.19(10)	
		09-Zn2-O9#2	171.66(19)	

Table S2 Selected bond lengths [Å] and Selected angles [°] for 1.

Symmetry transformations used to generate equivalent atoms: ¹-1+X,+Y,1+Z; ²-X,-Y,-1-Z; ³1-X,-1-Y,-1-Z.

 Table S3 Selected bond lengths [Å] and Selected angles [°] for 2.

Cd1-O1#1 2.487(4)	O3-Cd1-O6#2	93.8(3)
	02 C41 09#2	
Cd1-O2# 2.277(4)	03-Ca1-08#2	147.9(3)
Cd1-N1 2.250(4)	O3-Cd1-N1	107.00(18)
Cd1-O3 2.167(5)	O3-Cd1-O6#2	93.8(3)
Cd1-O5#2 2.400(10) O3-Cd1-O8#2	147.9(3)
Cd1-O6#2 2.358(8)	O3-Cd1-N1	107.00(18)
Cd1-O7#2 2.507(8)	O3-Cd1-O6#2	93.8(3)
Cd1-O8#2 2.384(11) O3-Cd1-O8#2	147.9(3)
O1#1-Cd1-O7#2 139.4(3)	O2#1-Cd1-O1#1	54.02(13)
O2#1 Cd1-O5#2 108.6(3)	O2#1-Cd1-O6#2	113.4(3)
O2#1 Cd1-O7#2 86.3(3)	O2#1 Cd1 O8#2	88.8(3)
N1-Cd1-1#1 81.38(15) N1-Cd1-O2#1	131.14(17)
N1-Cd1-O5#2 79.4(3)	N1-Cd1-O6#2	107.9(3)
N1-Cd1-O7#2 129.6(3)	N1-Cd1-O8#2	95.2(3)
O3-Cd1-O1#1 95.47(19) O3-Cd1-O2#1	95.47(19)
O3-Cd1-N1 107.00(18	B) O3-Cd1-O5#2	94.9(2)
	O3-Cd1-O7#2	105.3(3)

Symmetry transformations used to generate equivalent atoms: ${}^{1}+X$, ${}^{2}-Y$, ${}^{1/2}+Z$; ${}^{2}-1/2+X$, ${}^{1/2}+Y$, ${}^{+Z}$.

MOF	Ksv	Ref
1	2.84×10 ⁵ M ⁻¹	In this work
2	2.50×10 ⁵ M ⁻¹	In this work
[Tb(L)(OH)]· x(solv)	7.73×10- ² ppm ⁻¹	1
Zr-NDC/Tz and Zr-NDC/CN)	$1.8 \times 10^4 M^{-1}$	2
[Cd(NDC) _{0.5} (PCA)].xG	$3.5 \times 10^4 \mathrm{M}^{-1}$	3
[(CH3) ₂ NH ₂]3[Zn ₄ Na(BP	3.2×10 ⁴ M ⁻¹	4
TC) ₃]·4CH ₃ OH·2DMF		
[Zn(NDC)(H ₂ O)]n	$6 \times 10^4 \text{M}^{-1}$	5
[Cd(NDC)(H ₂ O)]n	$2.385 \times 10^4 \text{ M}^{-1}$	5
${[Tb(L)_{1.5}(H_2O)] \cdot 3H_2O}n$	$7.47 \times 10^4 \text{ M}^{-1}$	6

Table S4 The comparison of K_{sv} for 1, 2 and other reported MOFs.

Reference

1. J. Qin, B. Ma, X.-F. Liu, H.-L. Lu, X.-Y. Dong, S.-Q. Zang and H. Hou, *J. Mater. Chem. A.*, 2015, **3**, 12690.

2. M. Gutiérrez, R. Navarro, F. Sánchez and A. Douhal, *Phys. Chem. Chem. Phys.*, 2017, **19**, 16337.

3. S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee and S. K. Ghosh, *Angew. Chem. Int. Ed.*, 2013, **52**, 2881.

4. E.-L. Zhou, P. Huang, C. Qin, K.-Z. Shao and Z.-M. Su, J. Mater. Chem. A., 2015, 3, 7224.

5. P. Ghosh, S. K. Saha, A. Roychowdhury and P. Banerjee, Eur. J. Inorg. Chem., 2015, 2851.

6. L.-H. Cao, F. Shi, W.-M. Zhang, S.-Q. Zang and T. C. W. Mak, *Chem. Eur. J.*, 2015, **21**, 15705.