Electronic Supplementary Material (ESI) for New Journal of Chemistry.

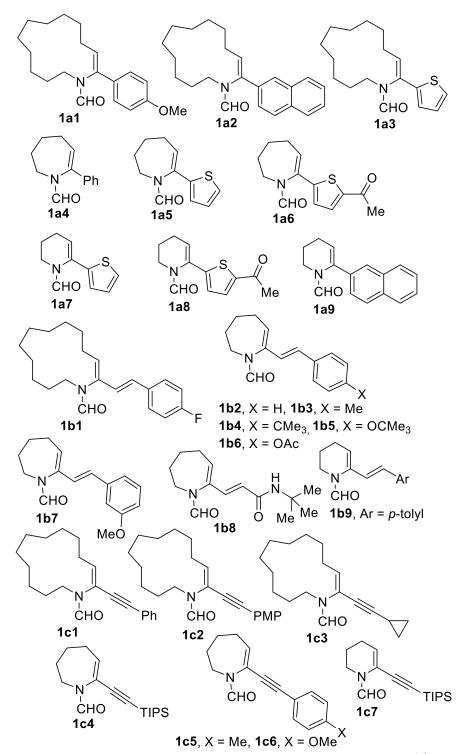
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information for New Journal of Chemistry; Beng

Supplementary Information for:

Skeletal remodelling of α -substituted cyclic eneformamides to α -ketonyl cyclic amines

Timothy K. Beng,* Jorge Garcia, Meagan Smith, and Alexis Orellana


Department of Chemistry, Central Washington University, Ellensburg, WA 98926, USA Timothy.beng@cwu.edu

Contents:

General Experimental Information and Procedures. Scheme 1 results	. S2
	S5
3. Scheme 2 results	S42
4. References	S51

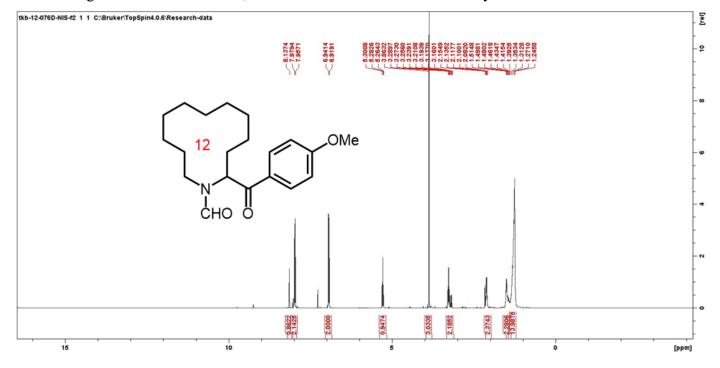
2. Experimental Section

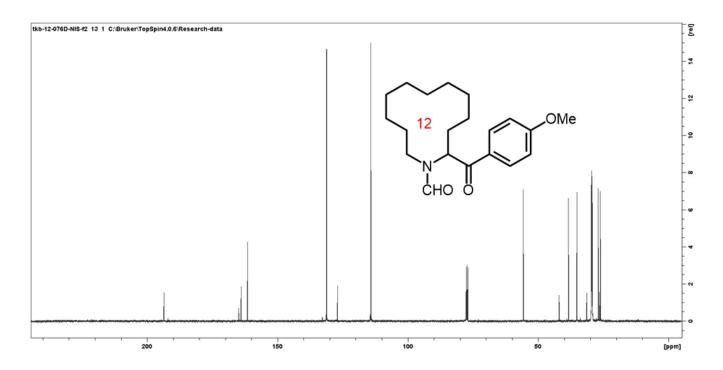
All experiments involving air and moisture sensitive reagents such as organolithium reagents were carried out under an inert atmosphere of nitrogen and using freshly distilled solvents. Column chromatography was performed on silica gel (230-400 mesh). Thin-layer chromatography (TLC) was performed using Silicycle SiliaplateTM glass backed plates (250 µm thickness, 60 Å porosity, F-254 indicator) and visualized using UV (254 nm) or CAM, *p*-anisaldehyde, or KMnO4 stain. Unless otherwise indicated, ¹H, ¹³C, and DEPT-135 NMR spectra were acquired using CDCl₃ at room temperature. Chemical shifts are quoted in parts per million (ppm). HRMS-EI⁺ data were obtained using either electronspray ionization (ESI) or electron impact (EI) techniques. High-resolution ESI was obtained on an LTQ-FT (ion trap; analyzed using Excalibur). High resolution EI was obtained on an Autospec (magnetic sector; analyzed using MassLynx).

Alpha-substituted eneformamides utilized in these studies. 1-3

General Procedure A: Deconstructive oxo-halogenation and substitutive amination

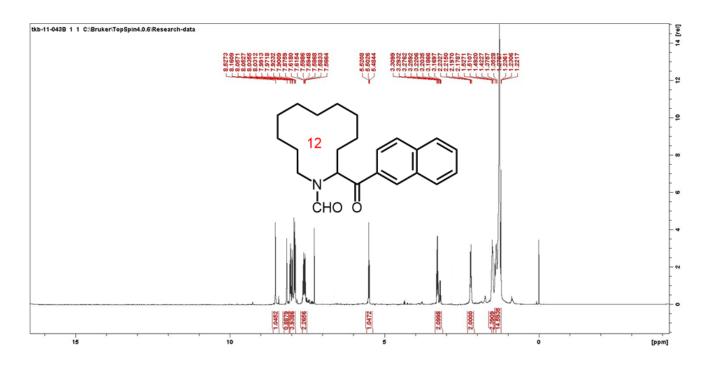
A 10 mL screw-cap vial equipped with a stir bar was charged with a solution of the eneformamide (1.0 mmol), dissolved in 2-MeTHF (5 mL) at room temperature. *N*-iodosuccinimide (1.1 mmol, 1.1 equiv) and deionized water (0.5 mL) were added. After complete consumption of the eneformamide (as judged by TLC and GC-MS), the mixture/suspension was diluted with EtOAc (20 mL). It was washed with *sat*. Na₂S₂O₃(aq) and then with brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give the crude product, which was dissolved in MeOH (5 mL) and Cs₂CO₃ (651.6 mg, 2 equiv) was added. The suspension was stirred at room temperature for 12 h (TLC and GC-MS monitoring). After complete conversion, it was diluted with water and extracted with EtOAc (2×50 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo* to give the desired cyclic formamide, which was purified by flash chromatography on silica.

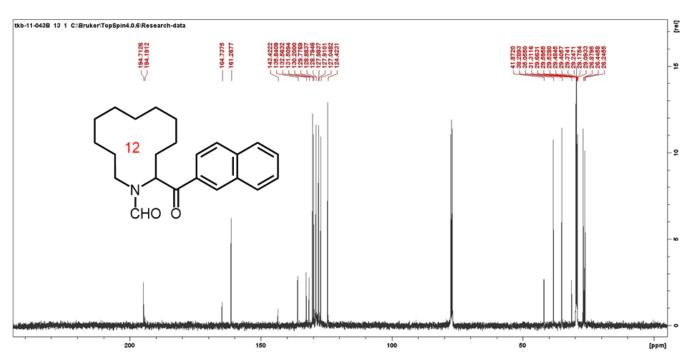

General Procedure B: Hydration and intramolecular C(sp³)-H amination


A 10 mL screw-cap vial equipped with a stir bar was charged with a 0.1 M H₃PO₄ (5 mL) solution and the eneformamide (1.0 mmol), dissolved in a small amount of EtOAc (0.5 mL). After stirring for 5 min at room temperature, the contents were transferred to a separatory funnel and EtOAc (10 mL) was added. The layers were separated and the aqueous layer was extracted twice with EtOAc. The combined organic layers were washed with *sat.* NaHCO₃ and with brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give the crude product. The crude product was dissolved in MeOH (5 mL) then *N*-iodosuccinimide (1.1 mmol, 1.1 equiv) and K₂CO₃ (2.2 equiv) were added. The suspension was stirred at room temperature (TLC and GC-MS monitoring). After complete conversion, it was diluted with water and extracted with EtOAc (2×50 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo* to give the desired cyclic formamide, which was purified by flash chromatography on silica.

Compound 4a

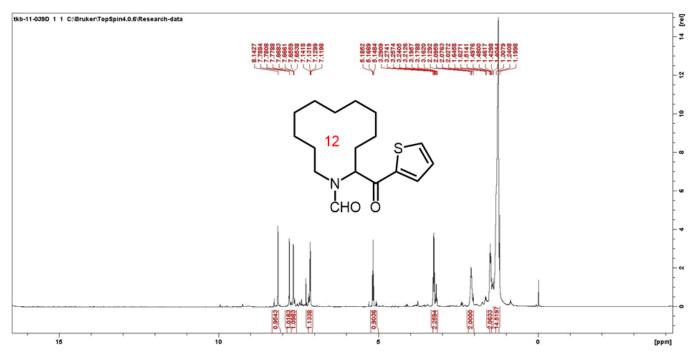
Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (75:25). Pale-yellow oil. Yield = 261.8 mg, 79%. ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 8.14 (s, 1H), 7.96 (d, *J* = 7.8 Hz, 2H), 6.92 (d, *J* = 7.8 Hz, 2H), 5.28 (t, *J* = 7.3 Hz, 1H), 3.86 (s, 3H), 3.29 – 3.16 (m, 2H), 2.15 – 2.08 (m, 2H), 1.51 – 1.24 (m, 16H). ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 193.4, 193.4, 164.8, 163.9, 161.4, 131.3, 131.1, 130.9, 126.9, 114.3, 114.1, 55.7, 41.9, 38.3, 35.1, 31.3, 29.6, 29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 26.9, 26.0. HRMS calc for C₂₀H₂₉NO₃ 331.2147, found 331.2151. FTIR (KBr): 2925, 1712, 1495, 1449, 1427, 1393, 1362, 1329, 1289, 1223, 1199, 1130, 1074, 1030, 989, 966, 925, 742, 693.

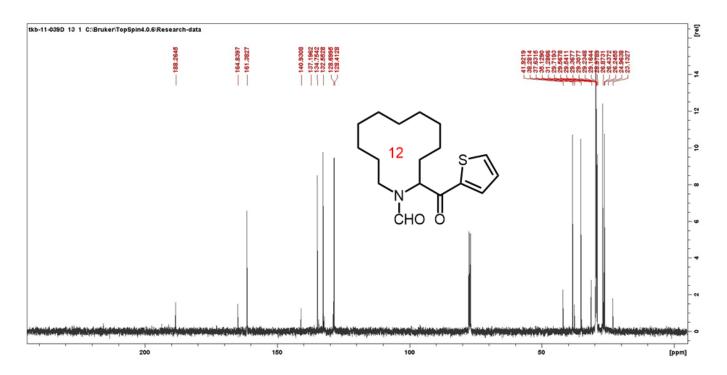

Note: Using General Procedure B, formamide 4a was obtained in 60% yield.



Compound 4b

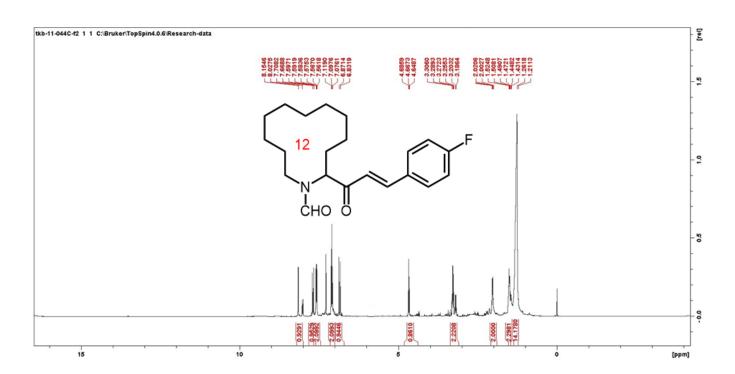
Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (90:10). Viscous oil. Yield = 284.7 mg, 81%. 1 H NMR (400 MHz, Chloroform-*d, rotamers*) δ 8.52 (s, 1H), 8.16 (s, 1H), 8.05 – 7.87 (m, 4H), 7.62 – 7.57 (m, 2H), 5.50 (t, J = 7.3 Hz, 1H), 3.30 – 3.17 (m, 2H), 2.23 – 2.18 (m, 2H), 1.53 – 1.22 (m, 16H). 13 C NMR (101 MHz, CDCl₃, *rotamers*) δ 194.7, 164.7, 161.3, 143.4, 135.9, 132.6, 131.5, 130.2, 129.8, 128.9, 128.8, 127.9, 127.0, 124.4, 41.9, 38.3, 35.1, 31.3, 29.7, 29.7, 29.6, 29.5, 29.4, 29.2, 29.1, 26.9, 26.4, 26.3, 26.2. HRMS calc for C₂₃H₂₉NO₂ 351.2198, found 351.2195.

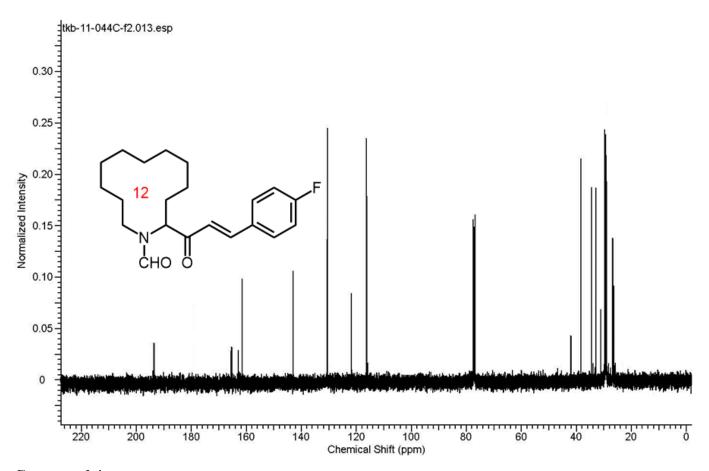




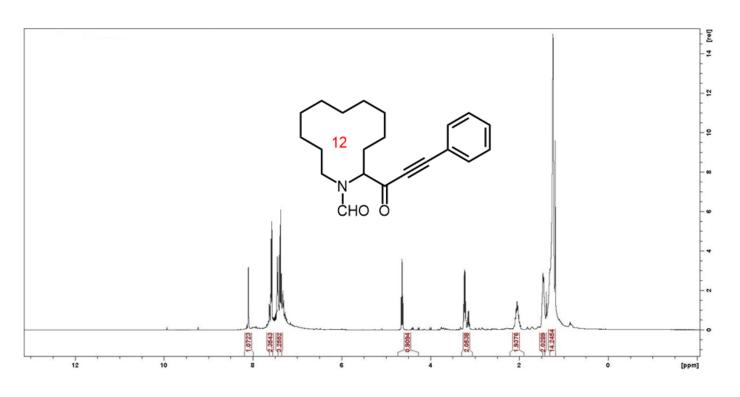
Compound 4c

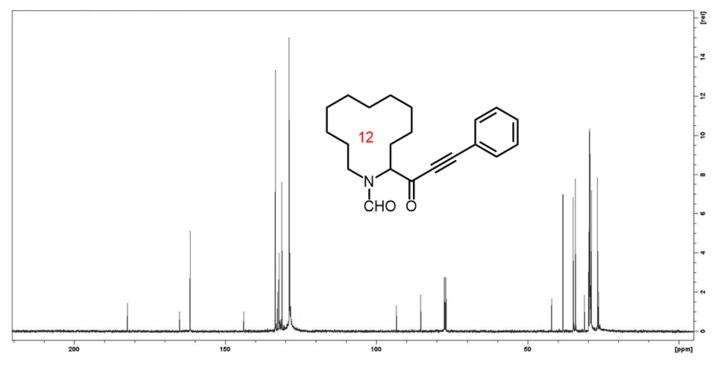
Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (75:25). Yellowish oil. Yield = 236.8 mg, 77%. ¹H NMR (400 MHz, Chloroform-*d*, rotamers) δ 8.14 (s, 1H), 7.78 (d, J = 4.4 Hz, 1H), 7.66 (d, J = 13.0 Hz, 1H), 7.13 (dd, J = 13.0, 4.4 Hz, 1H), 5.18 (t, J = 7.4 Hz, 1H), 3.29 – 3.16 (m, 2H), 2.12 – 2.02 (m, 2H),


1.64-1.20 (m, 16H). ^{13}C NMR (101 MHz, CDCl₃, rotamers) δ 188.3, 164.8, 161.4, 140.9, 138.3, 137.6, 137.2, 134.8, 132.6, 128.4, 41.9, 38.3, 37.6, 35.1, 31.3, 29.7, 29.6, 29.5, 29.5, 29.4, 29.3, 29.2, 29.1, 29.0, 28.9, 26.9, 26.4, 26.2, 23.1. HRMS calc for $C_{17}H_{25}NO_{2}S$ 307.1606, found 307.1600.



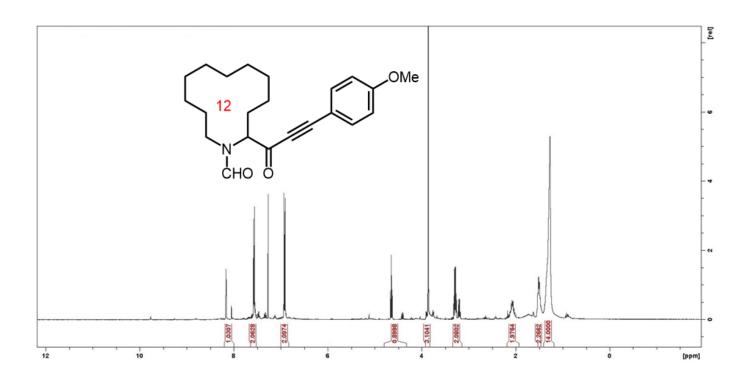
Compound 4d

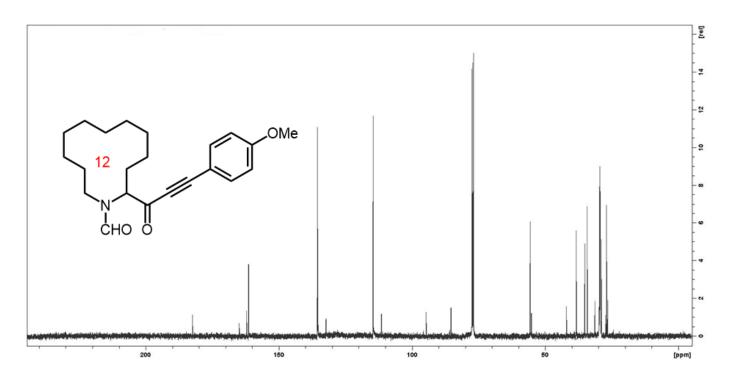

Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (70:30). Yellowish oil. Yield = 255.7 mg, 74%. ¹H NMR (400 MHz, Chloroform-*d*, *rotamers*) δ 8.15 (s, 1H), 7.69 (d, J = 15.8 Hz, 1H), 7.56 (d, J = 8.7 Hz, 2H), 7.09 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 15.8 Hz, 1H), 4.67 (t, J = 7.4 Hz, 1H), 3.30 – 3.19 (m, 2H), 2.00 (q, J = 7.1 Hz, 2H), 1.52 – 1.21 (m, 16H). ¹³C NMR (101 MHz, CDCl₃, rotamers) δ 193.6, 165.5, 165.3, 163.0, 161.5, 143.0, 130.7, 130.6, 121.8, 121.8, 116.3, 116.1, 42.1, 38.3, 34.5, 32.8, 31.2, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 28.9, 26.9, 26.4. HRMS calc for C₂₁H₂₈FNO₂ 345.2104, found 345.2107.



Compound 4e

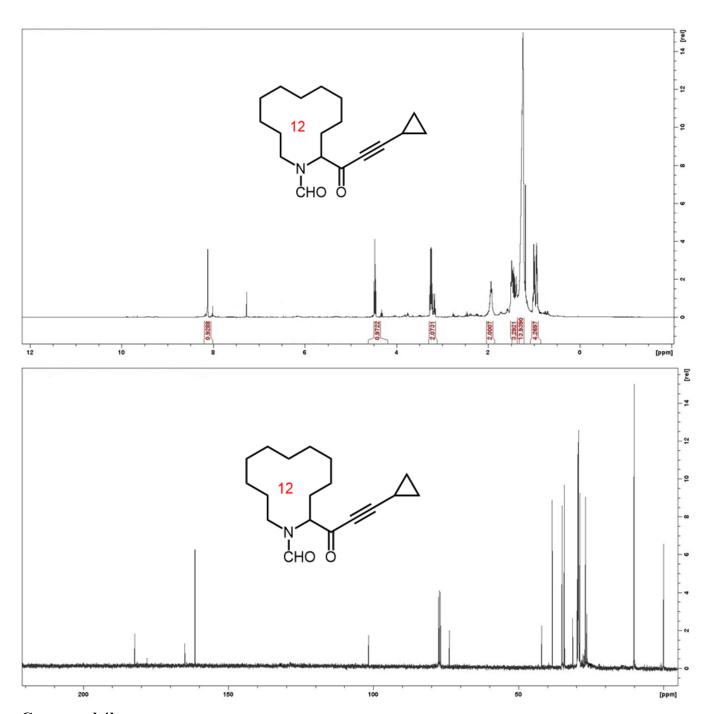
Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (70:30). Yellowish oil. Yield = 227.8 mg, 70%. ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 8.18 (s, 1H), 7.60 – 7.51 (m, 2H), 7.42 – 7.32 (m, 3H), 4.62 (t, J = 7.7 Hz, 1H), 3.33 – 3.25 (m, 2H), 2.16 – 1.93 (m, 2H), 1.49 – 1.24 (m, 16H). ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 182.3, 165.0, 161.5, 145.1, 143.8, 133.3, 132.2, 131.2, 128.8, 128.7, 128.6, 93.3, 85.3, 42.0, 38.3, 34.9, 34.3, 29.7, 29.5, 29.4, 29.3, 29.2, 29.1, 29.0, 28.9, 26.9. HRMS calc for C₂₁H₂₇NO₂ 325.2042, found 325.2045.





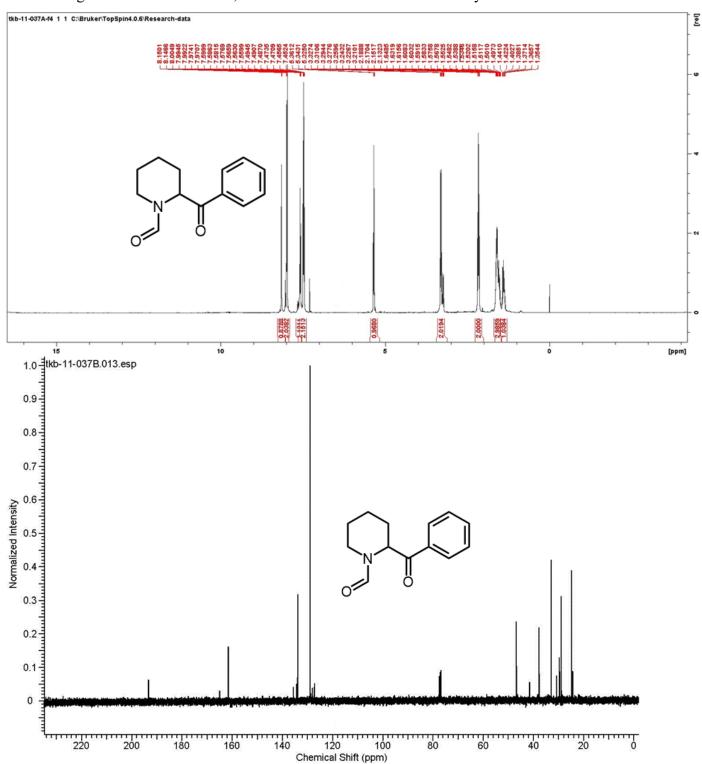
Compound 4f

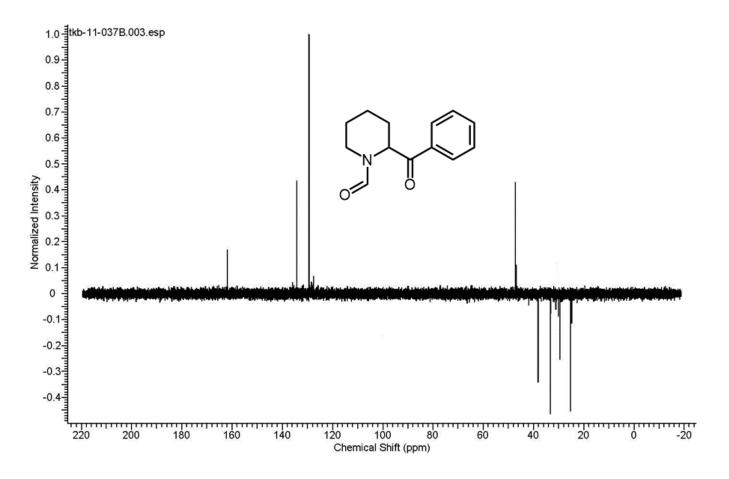
Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (50:50). Yellowish oil. Yield = 259.5 mg, 73%. H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 8.22 (s, 1H), 7.57 (d, J = 7.4 Hz, 2H), 6.92 (d, J = 7.4 Hz,


2H), 4.66 (t, J = 7.7 Hz, 1H), 3.82 (s, 3H), 3.35 - 3.22 (m, 2H), 2.11 - 1.95 (m, 2H), 1.56 - 1.34 (m, 2H). 1.32 - 1.28 (m, 14H). 13 C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 182.4, 164.8, 162.0, 161.3, 135.6, 135.5, 132.2, 132.1, 132.0, 114.6, 114.5, 111.4, 94.6, 85.7, 85.3, 55.6, 55.1, 41.9, 39.0, 38.3, 35.1, 34.2, 34.2, 31.3, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 29.0, 28.9, 26.9, 26.4. HRMS calc for $C_{22}H_{29}NO_3$ 355.2147, found 355.2144. FTIR: 2977, 1705, 1618, 1583, 1453, 1367, 1339, 1298, 1269, 1228, 1163, 1126, 911, 866.

Compound 4g

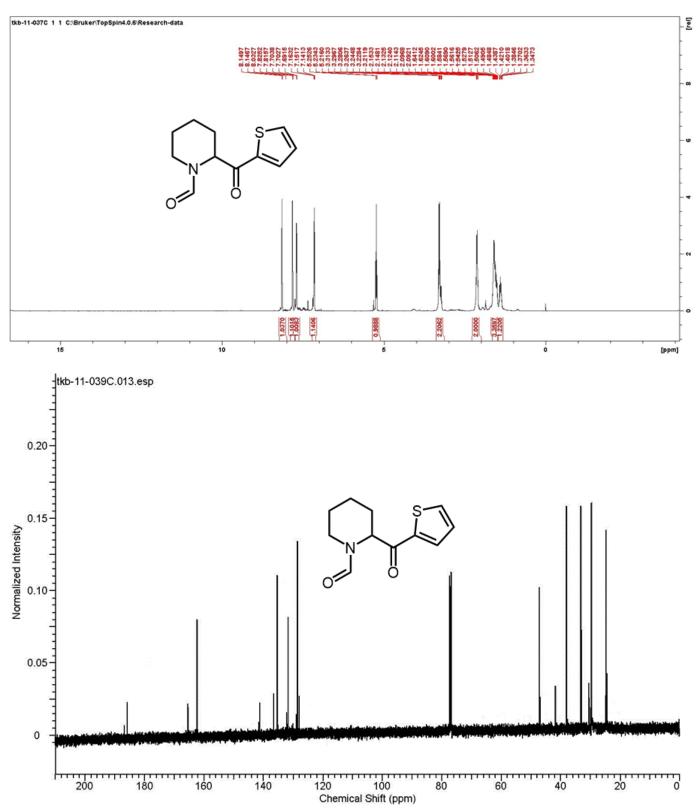
Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (90:10). Yellowish oil. Yield = 214.2 mg, 74%. ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 8.22 (s, 1H), 4.44 (t, J = 7.6 Hz, 1H), 3.27 – 3.18 (m, 2H), 1.89 (m, 2H), 1.49 – 1.30 (m, 17H), 0.96 – 0.84 (m, 4H). ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 182.2, 178.0, 164.9, 161.5, 101.6, 73.8, 41.9, 38.3, 34.9, 34.2, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 28.8, 26.8, 10.2, 10.1, 0.0, -0.1. HRMS calc for C₁₈H₂₇NO₂ 289.2042, found 289.2045.



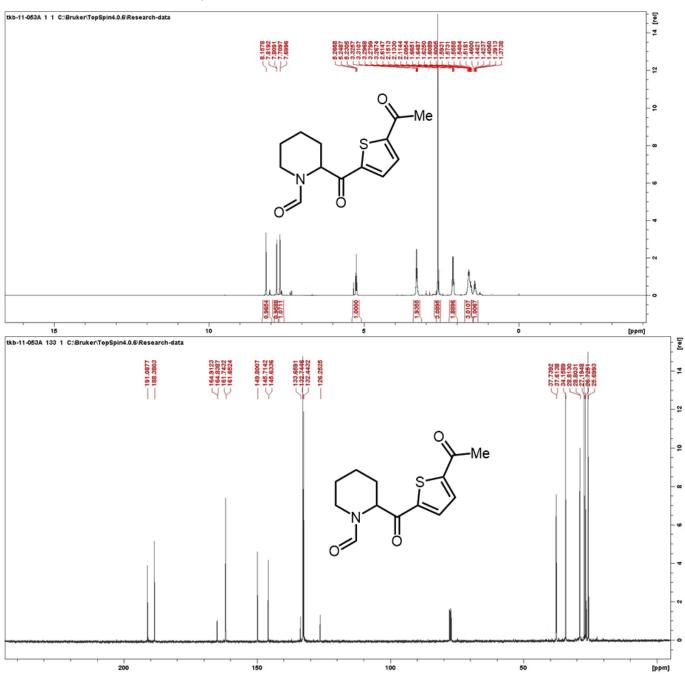

Compound 4h

Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (80:20). Yellowish oil. Yield = 195.6 mg, 90%. ¹H NMR (400 MHz, Chloroform-*d, rotamers*) δ 8.15 (s, 1H), 7.99 – 7.97 (m, 2H), 7.59 – 7.56 (m, 1H), 7.45 (t, J = 7.3 Hz, 2H), 5.34 (t, J = 7.2 Hz, 1H), 3.29 (q, J = 6.6 Hz, 2H), 2.17 (q, J = 7.4 Hz, 2H), 1.64 – 1.35 (m, 4H) ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 193.3, 165.0, 161.6, 161.5, 134.3,

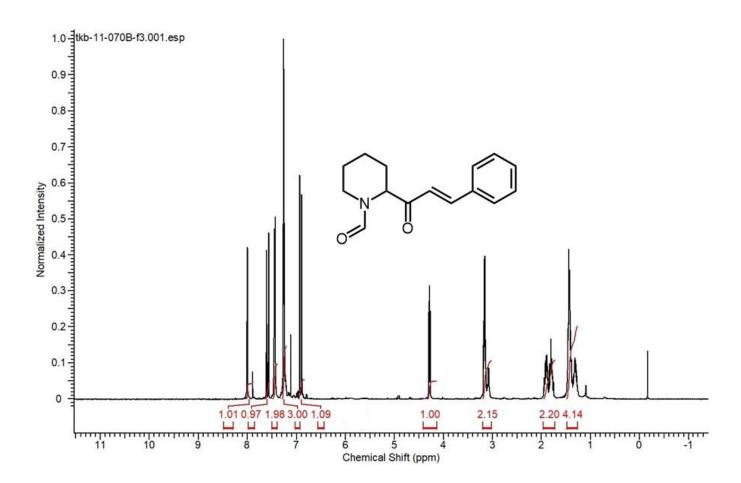
134.0, 133.9, 129.0, 128.9, 128.9, 128.1, 127.2, 46.9, 46.7, 41.6, 37.9, 37.7, 33.0, 32.9, 30.8, 29.7, 29.5, 29.1, 29.0, 24.8, 24.4. HRMS calc for C₁₃H₁₅NO₂ 217.1103, found 217.1106.

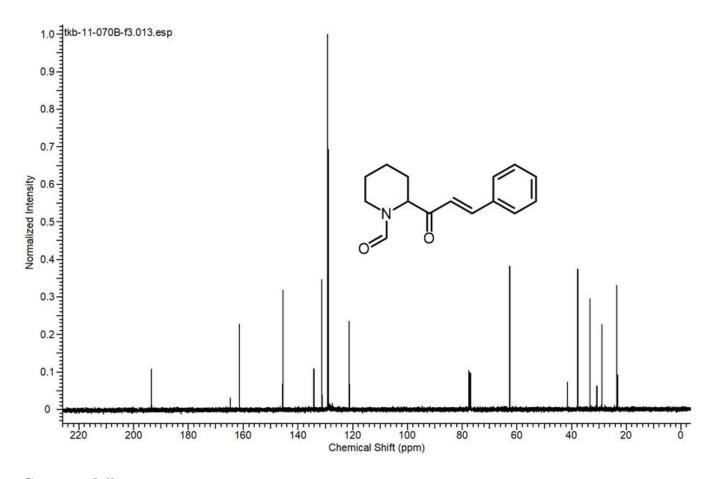

Note: Using General Procedure B, formamide 4h was obtained in 73% yield.

Compound 4i

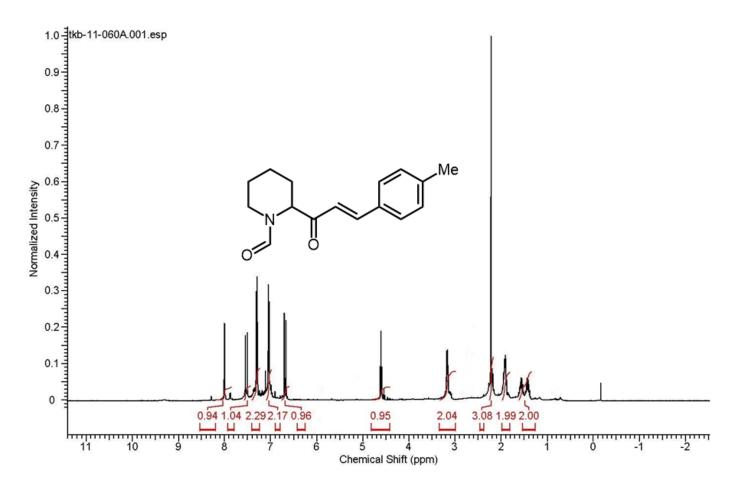

Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (75:25). Yellowish oil. Yield = 194.3 mg, 87%. ¹H NMR (400 MHz, Chloroform-*d*, *rotamers*) δ 8.14 (s, 1H), 7.82 (d, J = 9.5 Hz, 1H), 7.70 (dd, J = 3.9, 1.2 Hz, 1H), 7.14 (t, 1H), 5.23 (t, J = 7.5 Hz, 1H), 3.31 – 3.21 (m, 2H), 2.15 – 2.09 (m, 2H), 1.64 – 1.35 (m, 4H). ¹³C NMR (101 MHz, CDCl₃, rotamers) δ 186.8, 185.7, 165.5, 162.3, 162.2, 141.2, 136.5, 135.4, 135.3, 133.6, 133.4, 133.4, 131.7, 131.6, 128.6, 128.5, 128.0, 47.9, 47.7, 47.1, 45.9, 41.8, 38.2, 38.1, 33.3, 33.2, 33.1, 33.0, 28.8, 28.7, 24.7, 24.6. HRMS calc for C₁₁H₁₃NO₂S 223.0667, found 223.0664.

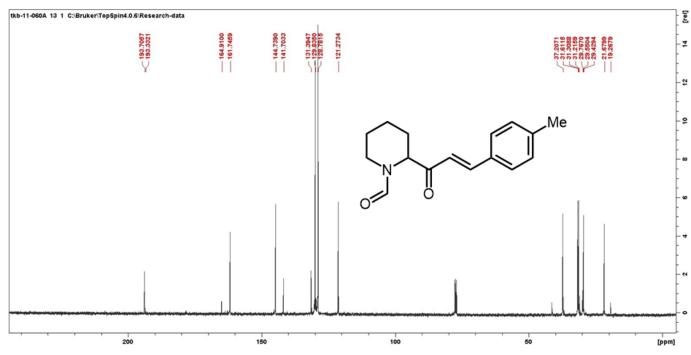
Compound 4j


Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (75:25). Viscous oil. Yield = 225.5 mg, 85%. ¹H NMR (400


MHz, Chloroform-*d, rotamers*) δ 8.16 (s, 1H), 7.81 (d, J = 9.3 Hz, 1H), 7.70 (d, J = 9.3 Hz, 1H), 5.25 (t, J = 7.5 Hz, 1H), 3.32 – 3.27 (m, 2H), 2.61 (s, 3H), 2.15 – 2.09 (m, 2H), 1.67 – 1.37 (m, 4H). 13 C NMR (101 MHz, CDCl₃, rotamers) δ 191.1, 188.4, 164.9, 164.8, 161.7, 161.6, 149.8, 145.7, 145.6, 133.6, 132.7, 132.4, 166.3, 37.7, 37.6, 34.2, 28.8, 28.7, 27.1, 26.7, 25.7. HRMS calc for C₁₃H₁₅NO₃S 265.0773, found 265.0777.

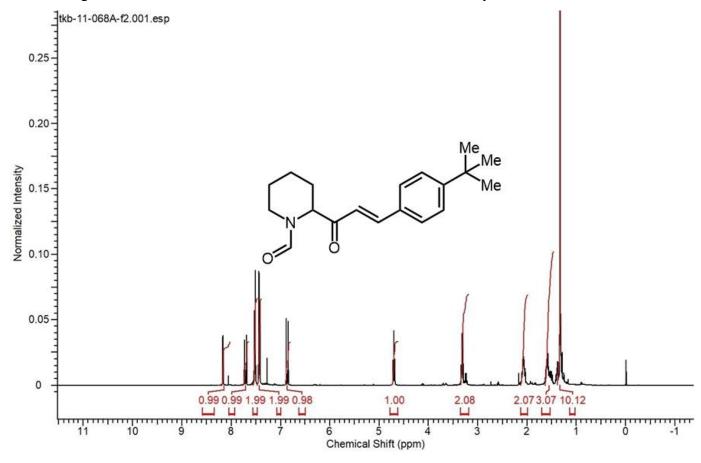
Compound 4k

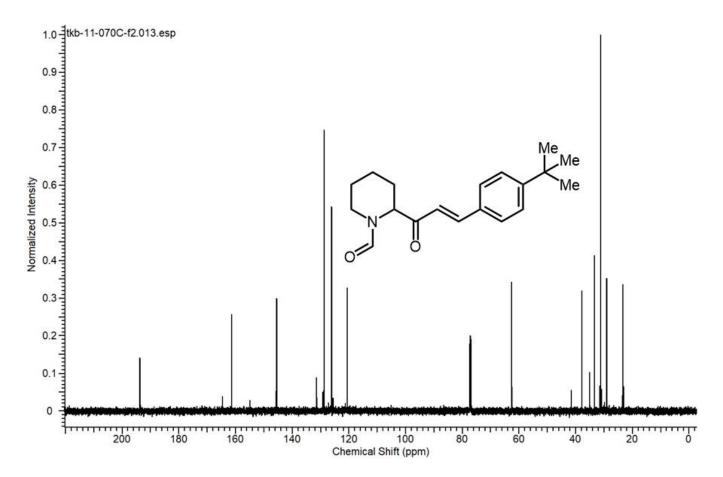

Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (75:25). Pale-yellow oil. Yield = 211.7 mg, 87%. ¹H NMR (400 MHz, Chloroform-*d, rotamers*) δ 8.01 (s, 1H), 7.57 (d, J = 15.8, 1H), 7.51 – 7.38 (m, 2H), 7.33 – 7.21 (m, 2H), 6.75 (d, J = 15.8 Hz, 1H), 4.54 (td, J = 7.3, 2.5 Hz, 1H), 3.22 – 3.13 (m, 2H), 2.02 – 1.83 (m, 2H), 1.41 – 1.22 (m, 4H). ¹³C NMR (101 MHz, CDCl₃, rotamers) δ 193.5, 164.7, 161.4, 144.6, 144.5, 134.2, 131.1, 131.0, 129.1, 128.7, 122.2, 41.5, 37.8, 33.9, 33.8, 31.8, 31.5, 30.7, 28.9, 26.8, 26.5. HRMS calc for C₁₅H₁₇NO₂ 243.1259, found 243.1262.



Compound 41

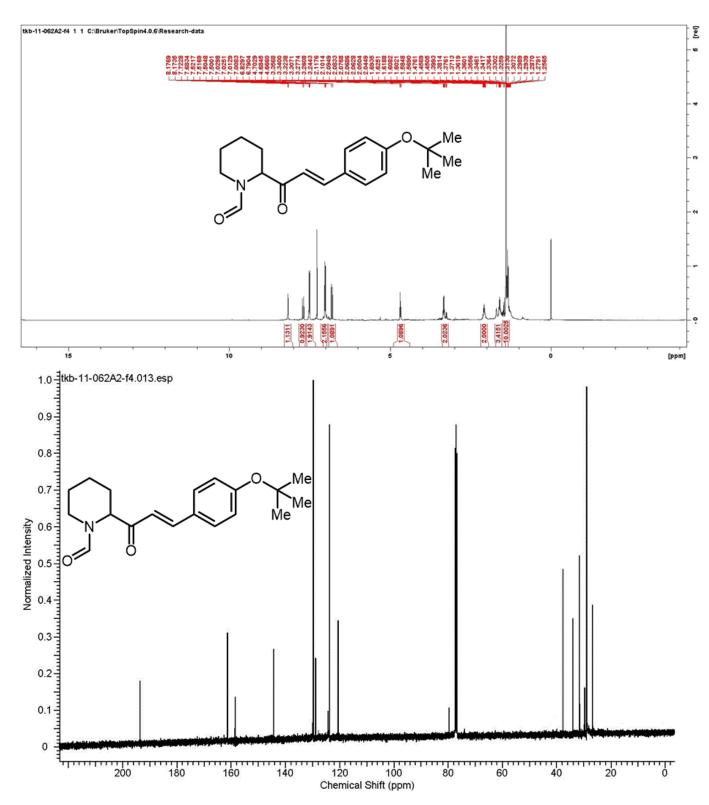
Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (80:20). Pale-yellow oil. Yield = 218.7 mg, 85%. ¹H NMR (400 MHz, Chloroform-d) δ 8.00 (s, 1H), 7.53 (d, J = 15.8 Hz, 1H), 7.46 (d, 2H), 7.17 (d, 2H), 6.68 (d, J = 15.8 Hz, 1H), 4.60 (t, J = 7.3 Hz, 1H), 3.25 – 3.04 (m, 2H), 2.22 (s, 3H), 2.01 – 1.79 (m, 2H), 1.56 (ddq, J = 13.2, 8.5, 6.7 Hz, 1H), 1.41 (ddq, J = 13.4, 9.3, 6.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 193.7, 164.9, 161.8, 161.7, 144.7, 141.7, 131.4, 129.8, 128.8, 121.3, 37.2, 37.1, 31.6, 31.2, 29.4, 21.7, 19.3. HRMS calc for C₁₆H₁₉NO₂ 257.1416, found 257.1410.



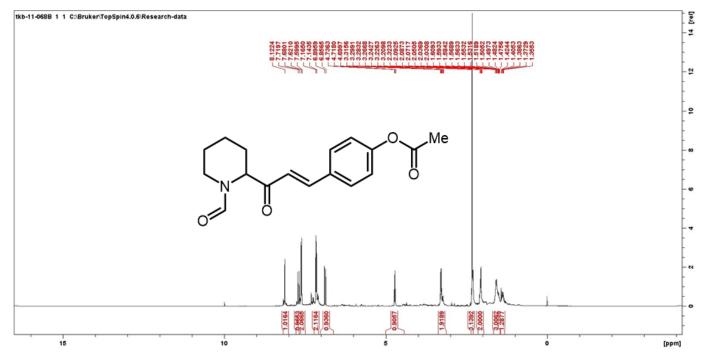


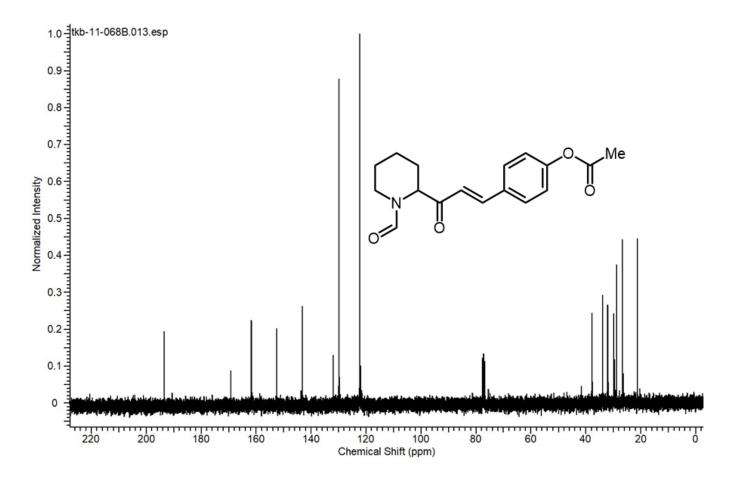
Compound 4m

Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (90:10). Pale-yellow oil. Yield = 263.5 mg, 88%. ¹H NMR (400 MHz, Chloroform-*d, rotamers*) δ 8.01 (s, 1H), 7.56 (d, J = 15.9 Hz, 1H), 7.52 (d, 2H), 7.45 (d, 2H), 6.71 (d, J = 15.8 Hz, 1H), 4.54 (t, J = 7.3 Hz, 1H), 3.13 – 3.06 (m, 2H), 1.99 – 1.86 (m, 2H), 1.45 – 1.33 (m, 3H), 1.28 – 1.16 (m, 1H), 1.17 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, *rotamers*) δ 193.7, 164.7, 161.4, 154.9, 145.7, 145.5, 131.5, 128.71, 126.1, 120.5, 62.6, 41.5, 37.8, 35.1, 33.4, 31.2, 30.8, 29.0, 23.4, 23.1. HRMS calc for C₁₉H₂₅NO₂ 299.1885, found 299.1889.


Note: Using General Procedure B, formamide 4m was obtained in 74% yield.

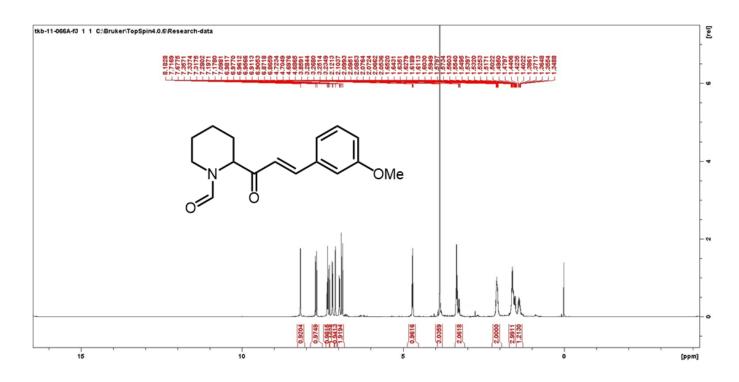
Compound 4n

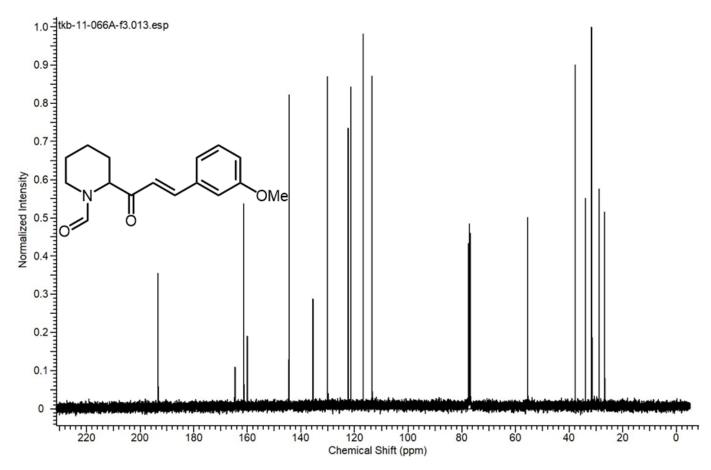

Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (70:30). Pale-yellow oil. Yield = 268.1 mg, 85%. ¹H NMR (400 MHz, Chloroform-*d*, *rotamers*) δ 8.18 (s, 1H), 7.71 (d, J= 15.8 Hz, 1H), 7.57 – 7.47 (d, 2H), 7.11 – 6.99 (d, 2H), 6.81 (d, J= 15.8 Hz, 1H), 4.68 (t, J= 7.4 Hz, 1H), 3.40 – 3.32 (m, 2H), 2.16 – 2.01 (m, 2H), 1.63 – 1.47 (m, 2H), 1.39 – 1.28 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 193.6, 164.7, 161.3, 158.6, 144.4, 144.3, 129.8, 128.9, 123.7, 120.6, 79.7, 37.8, 34.0, 31.7, 29.0, 28.9, 28.8, 28.7, 26.8. HRMS calc for C₁₉H₂₅NO₃ 315.1834, found 315.1837.



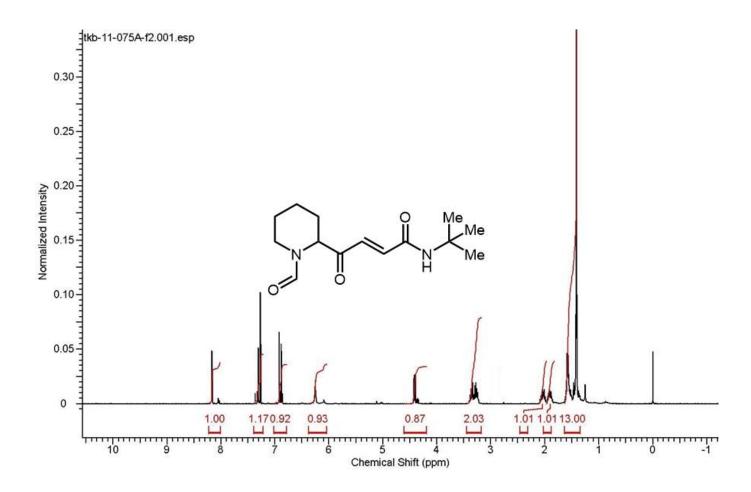
Compound 4o

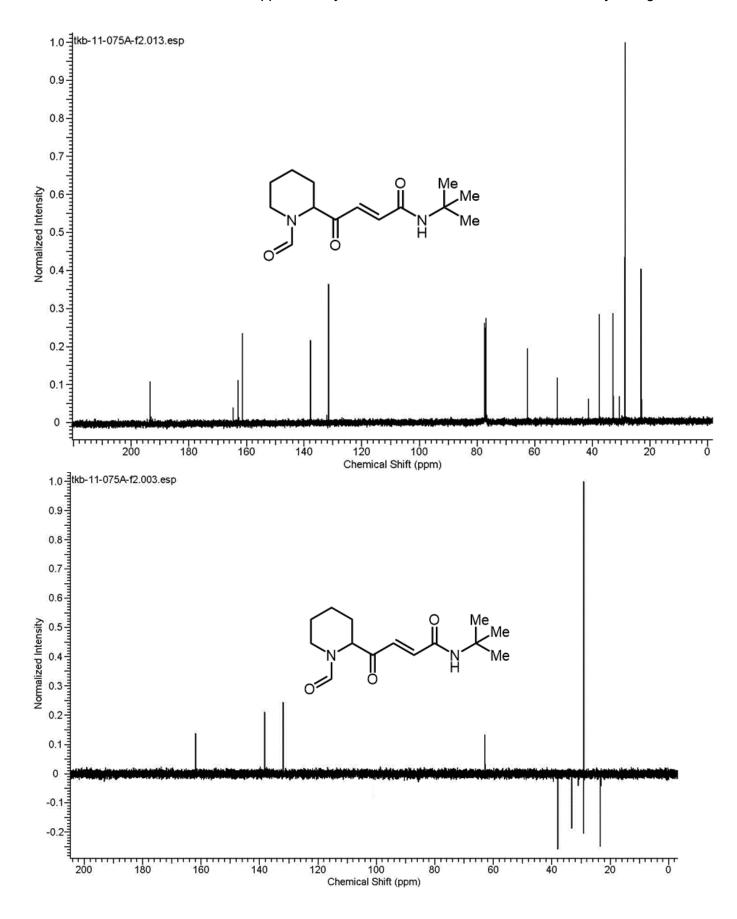
Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (70:30). Pale-yellow oil. Yield = 247.1 mg, 82%. ¹H NMR (400


MHz, Chloroform-*d*, rotamers) δ 8.12 (s, 1H), 7.67 (d, J = 15.8 Hz, 1H), 7.53 (d, J = 7.3 Hz, 1H), 7.03 (d, J = 7.3 Hz, 2H), 6.78 (d, J = 15.8 Hz, 1H), 6.23 (s, 1H), 4.53 (t, J = 7.3 Hz, 1H), 3.29 – 3.10 (m, 2H), 2.33 (s, 3H), 2.10 (d, J = 4.3 Hz, 2H), 1.71 – 1.35 (m, 4H). ¹³C NMR (101 MHz, CDCl₃, rotamers) δ 193.4, 193.3, 169.3, 161.8, 152.6, 143.3, 131.9, 129.9, 122.4, 121.9, 41.6, 37.8, 33.9, 32.1, 29.8, 29.5, 28.8, 26.8, 21.3. HRMS calc for C₁₇H₁₉NO₄ 301.1314, found 301.1318.



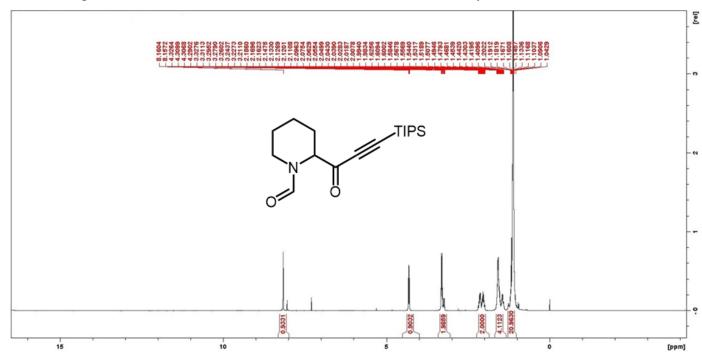
Compound 4p

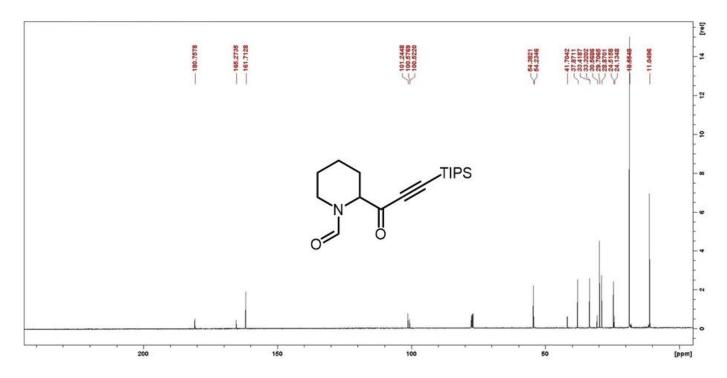

Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (75:25). Pale-yellow oil. Yield = 243.2 mg, 89%. ¹H NMR (400 MHz, Chloroform-*d*, *rotamers*) δ 8.18 (s, 1H), 7.74 (d, J = 15.8 Hz, 1H), 7.42 (t, 1H), 7.29 (s, 1H), 7.13 (t, J = 2.1 Hz, 1H), 6.99 (dd, J = 8.3, 2.6Hz, 1H), 6.82 (d, J = 15.8 Hz, 1H), 4.74 (t, J = 7.3 Hz, 1H), 3.80 (s, 3H), 3.33 – 3.10 (m, 2H) 2.03 – 1.96 (m, 2H), 1.63 – 1.30 (m, 4H). ¹³C NMR (101 MHz, CDCl₃, rotamers) δ 193.4, 164.7, 161.4, 160.0, 144.5, 144.4, 135.5, 130.1, 122.5, 121.4, 116.8, 113.6, 113.6, 55.5, 41.4, 37.8, 33.9, 33.9, 31.7, 31.4, 30.7, 28.9, 26.8, 26.4. HRMS calc for C₁₆H₁₉NO₃ 273.1365, found 273.1368.



Compound 4q

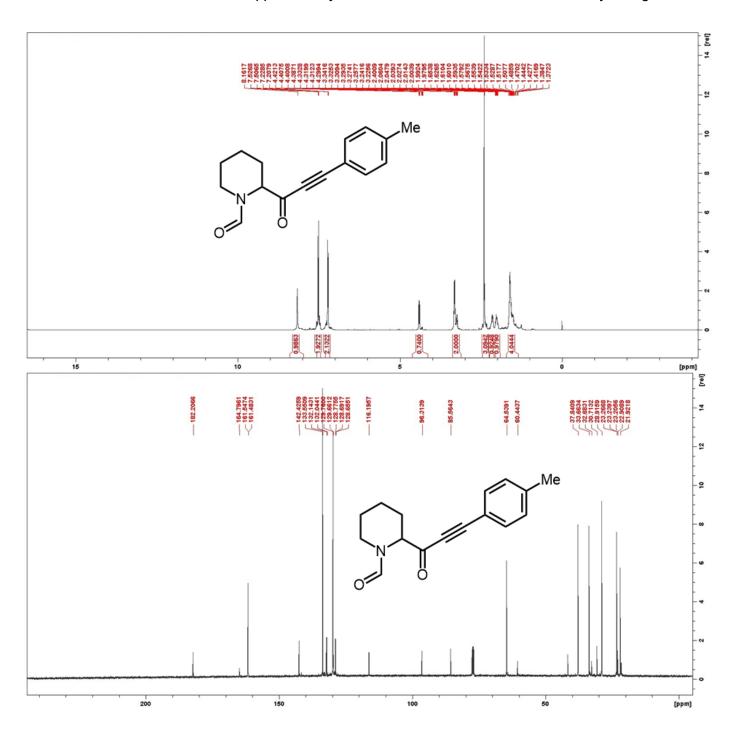
Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (50:50). Pale-yellow oil. Yield = 215.7 mg, 81%. ¹H NMR (400 MHz, Chloroform-d) δ 8.02 (s, 1H), 7.24 (d, J = 15.2 Hz, 1H), 6.84 (d, J = 15.2 Hz, 1H), 6.30 (s, 1H), 4.23 (t, J = 8.2 Hz, 1H), 3.37 – 3.25 (m, 2H), 2.05 – 1.97 (m, 1H), 1.93 – 1.88 (m, 1H), 1.49 – 1.25 (m, 13H). ¹³C NMR (101 MHz, CDCl₃) δ 193.5, 164.6, 162.9, 161.5, 137.9, 131.6, 62.6, 62.4, 52.2, 41.4, 37.6, 32.9, 32.7, 30.7, 28.8, 28.7, 28.6, 23.1, 22.9. HRMS calc for C₁₄H₂₂N₂O₃ 266.1630, found 266.1635.



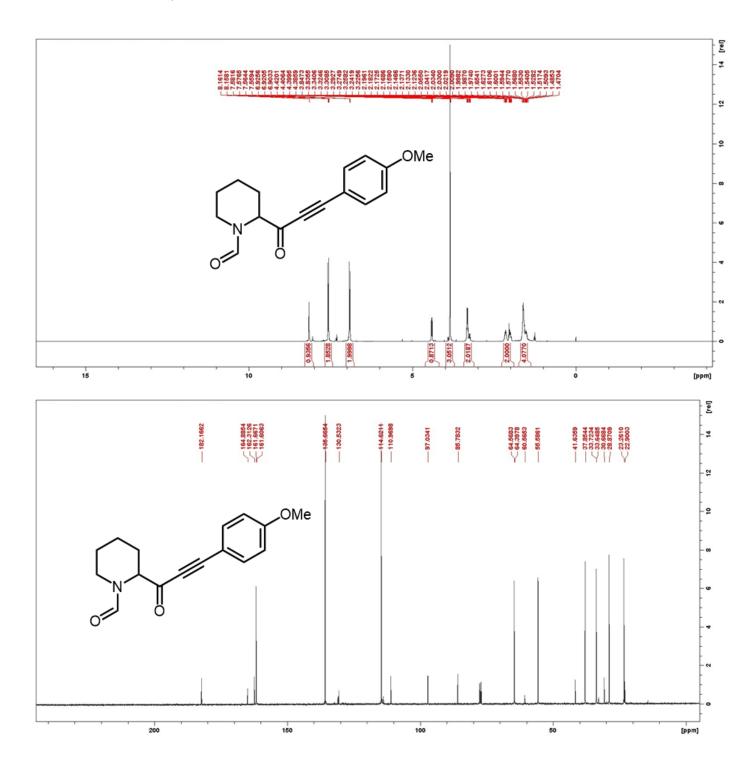


Compound 4r

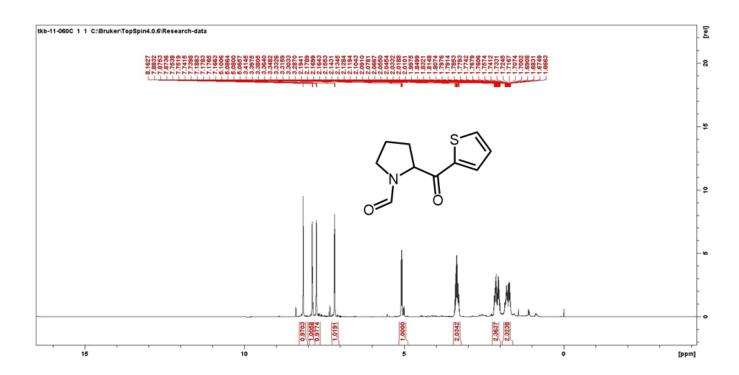
Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (90:10). Yellowish oil. Yield = 270.1 mg, 84%. ¹H NMR (400 MHz, Chloroform-*d*, *rotamers*) δ 8.16 (s, 1H), 4.32 (t, J = 7.1 Hz, 1H), 3.32 – 3.21 (m, 2H), 2.18 – 1.98 (m, 2H), 1.62 – 1.41 (m, 4H), 1.20 – 1.04 (m, 21H). ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 180.8, 180.6, 178.2, 164.9, 161.5, 101.2, 100.5, 54.4, 54.2, 41.6, 37.8, 33.4, 33.3, 30.6, 29.7, 28.9, 24.5, 24.1, 18.5, 11.1. HRMS calc for C₁₈H₃₁NO₂Si 321.2124, found 321.2127.

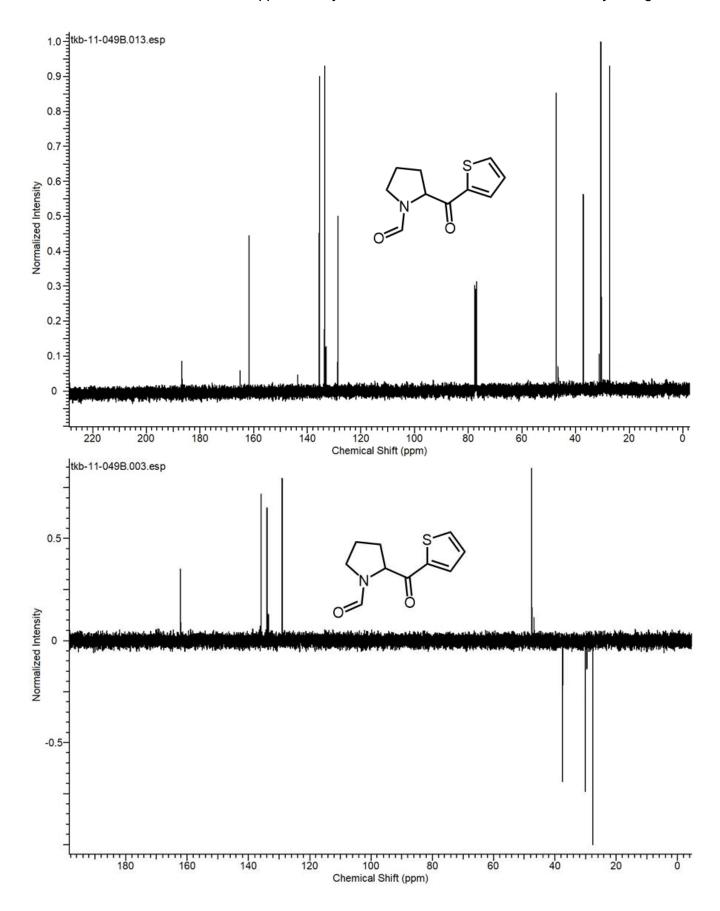

Note: Using General Procedure B, formamide 4r was obtained in 69% yield.

Compound 4s

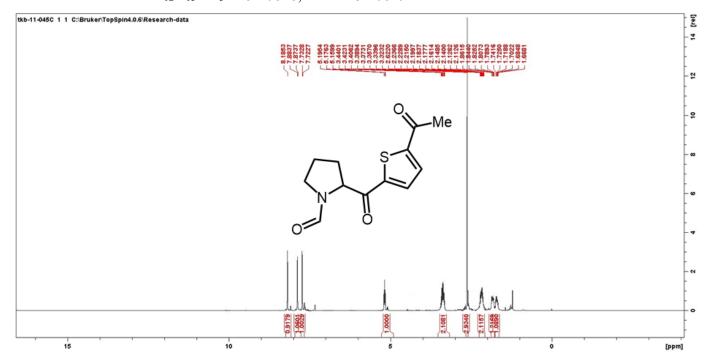

Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (80:20). Yellowish oil. Yield = 222.1 mg, 87%. ¹H NMR (400 MHz, Chloroform-*d*, *rotamers*) δ 8.16 (s, 1H), 7.53 (d, J = 7.8 Hz, 2H) 7.20 (d, J = 7.8 Hz, 2H), 4.40 (t, J = 8.2 Hz, 1H), 3.14 (q, J = 6.4 Hz, 2H), 2.40 (s, 3H), 2.06 – 1.97 (m, 2H), 1.65 – 1.37 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 182.2, 164.8, 161.5, 161.4, 142.4, 133.5, 132.1, 132.0, 129.7, 129.6, 128.8, 128.7, 128.6, 116.2, 96.3, 85.6, 64.5, 64.4, 60.4, 41.6, 37.8, 37.8, 33.7, 33.6, 33.5, 30.7, 28.9, 28.8, 23.3, 23.2, 22.9, 21.9. HRMS calc for C₁₆H₁₇NO₂ 255.1259, found 255.1255.

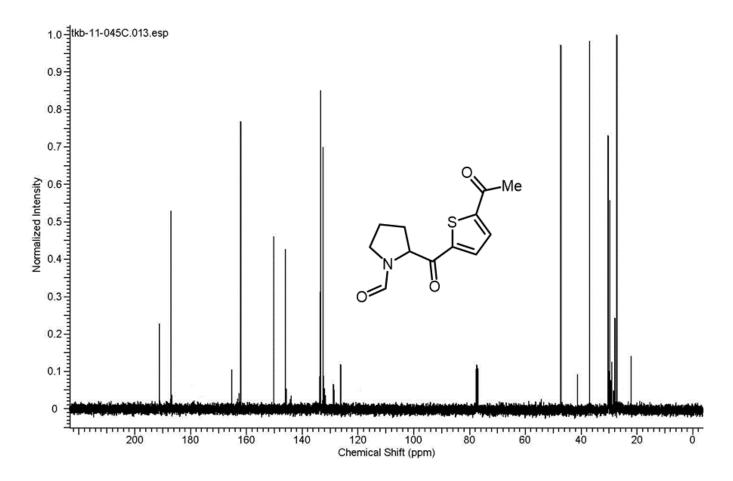
Compound 4t


Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (50:50). Yellowish oil. Yield = 244.2 mg, 90%. ¹H NMR (400 MHz, Chloroform-*d, rotamers*) δ 8.16 (s, 1H), 7.52 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 4.25 (t, J = 6.4 Hz, 1H), 3.76 (s, 3H), 3.13 (q, J = 6.4 Hz, 2H), 2.06 – 1.86 (m, 2H), 1.50 – 1.36


(m, 4H). 13 C NMR (101 MHz, CDCl₃) δ 182.2, 164.9, 162.3, 161.7, 135.8, 114.6, 110.9, 97.0, 85.8, 64.6, 64.4, 55.6, 41.6, 37.9, 33.7, 33.6, 30.7, 28.9, 23.3, 23.2, 22.9. HRMS calc for $C_{16}H_{17}NO_3$ 271.1208, found 271.1204.

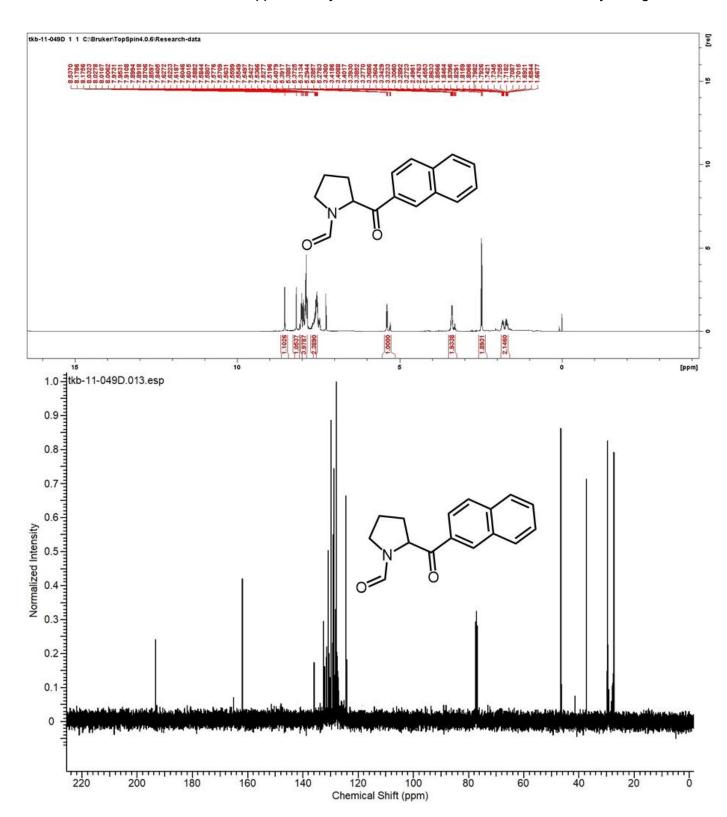
Compound 4u


Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (75:25). Pale-yellow oil. Yield = 171.6 mg, 82%. ¹H NMR (400 MHz, Chloroform-*d, rotamers*) 8.16 (s, 1H), 7.87 (d, J = 5.0 Hz, 1H), 7.75 (d, J = 5.0 Hz, 1H), 7.17 (dd, J = 5.0, 3.8 Hz, 1H), 5.08 (dd, J = 8.3, 5.7 Hz, 1H), 3.41 – 3.28 (m, 2H), 2.19 – 1.99 (m, 2H), 1.83 – 1.67 (m, 2H). ¹³C NMR (101 MHz, CDCl₃, rotamers) δ 186.8, 165.1, 161.8, 143.6, 141.2, 135.5, 133.7, 133.5, 133.4, 133.1, 132.2, 131.8, 128.7, 128.6, 47.3, 46.5, 37.2, 37.1, 30.7, 29.5, 27.4, 27.3. HRMS calc for C₁₀H₁₁NO₂S 209.0510, found 209.0514.



Compound 4v

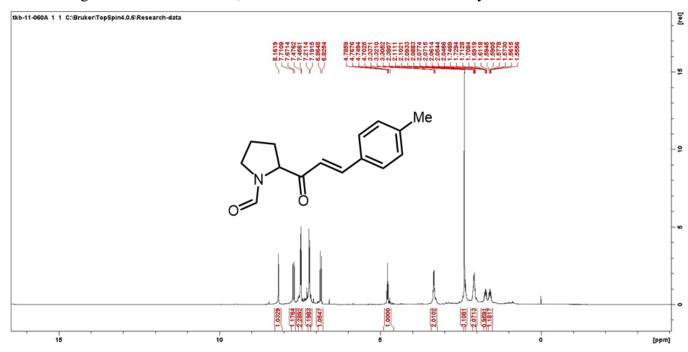
Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (75:25). Pale-yellow oil. Yield = 198.5 mg, 79%. ¹H NMR (400 MHz, Chloroform-*d, rotamers*) δ 8.19 (s, 1H), 7.87 (d, J = 5.8 Hz, 1H), 7.72 (d, J = 5.8 Hz, 1H), 5.17 (dd, J = 8.1, 6.1 Hz, 1H), 3.44 – 3.32 (m, 2H), 2.62 (s, 3H), 2.24 – 2.11 (m, 2H), 1.86 – 1.79 (m, 1H), 1.74 – 1.67 (m, 1H). ¹³C NMR (101 MHz, CDCl₃, rotamers) δ 191.2, 187.1, 165.1, 162.0, 150.2, 145.9, 133.5, 133.4, 132.5, 128.8, 128.7, 126.3, 47.3, 41.3, 37.0, 30.3, 29.7, 27.9, 27.2, 27.1, 22.2. HRMS calc for C₁₂H₁₃NO₃S 251.0616, found 251.0619.

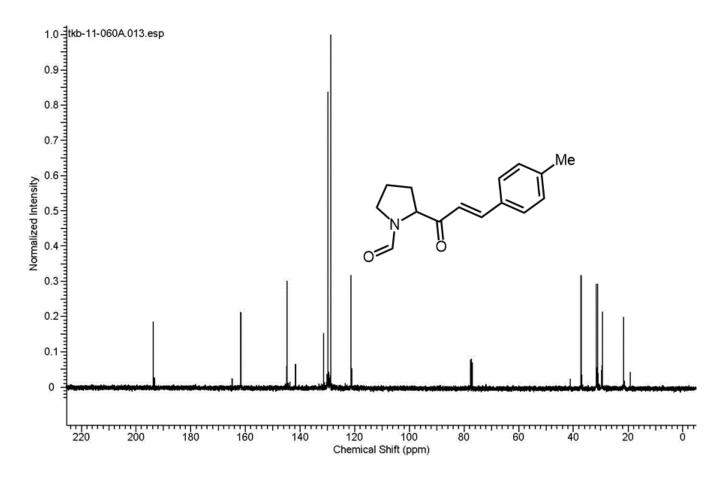


Compound 4w

Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (70:30). Pale-yellow oil. Yield = 215.3 mg, 85%. 1 H NMR (400 MHz, Chloroform-*d, rotamers*) δ 8.53 (s, 1H), 8.17 (s, 1H), 8.02 – 7.84 (m, 4H), 7.62 – 7.51 (m, 2H), 5.40 (t, J = 7.2 Hz, 1H), 3.41 – 3.27 (m, 2H), 2.50 – 2.45 (m, 2H), 1.86 – 1.67 (m, 2H). 13 C NMR (101 MHz, CDCl₃, rotamers) δ 193.3, 161.9, 130.9, 130.9, 129.9, 129.1, 128.9, 128.3, 127.9, 127.1, 124.4, 46.6, 37.4, 30.6, 29.7, 27.4. HRMS calc for C₁₆H₁₅NO₂ 253.1103, found 253.1100.

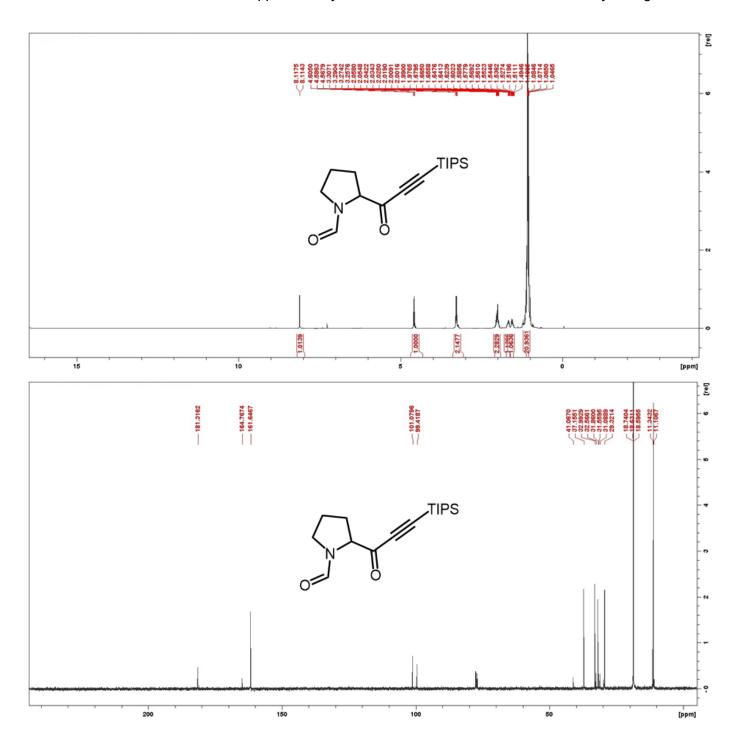
Note: Using General Procedure B, formamide 4w was obtained in 72% yield.

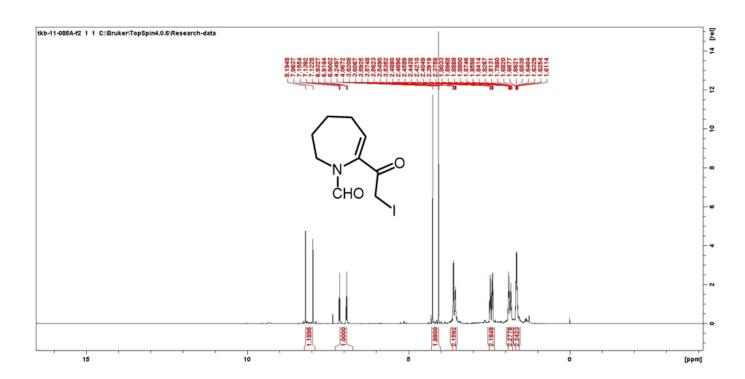


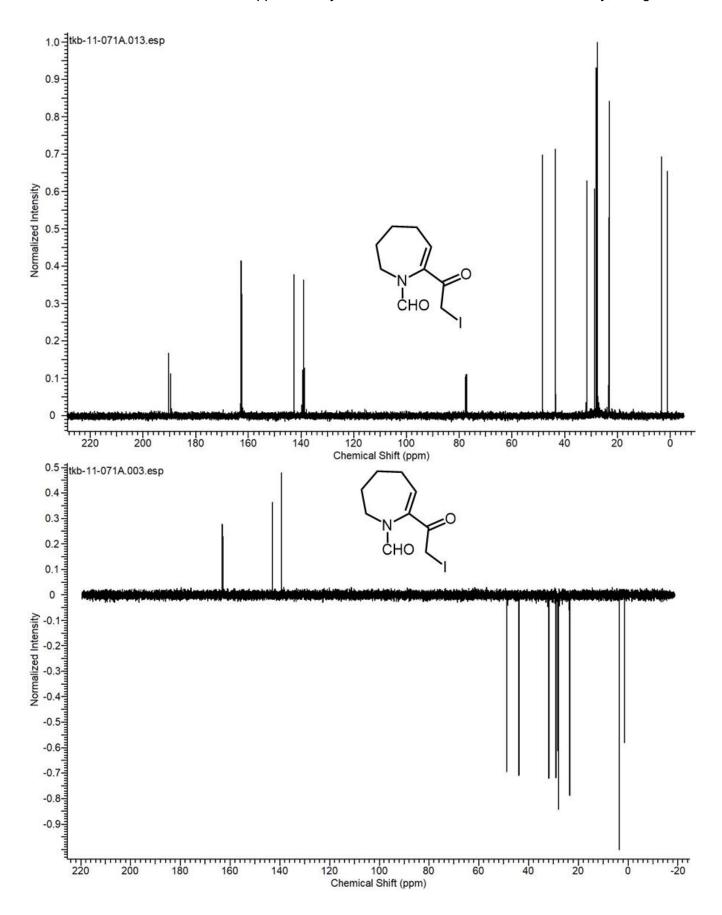

Compound 4x

Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (80:20). Pale-yellow oil. Yield = 194.6 mg, 80%. ¹H NMR (400

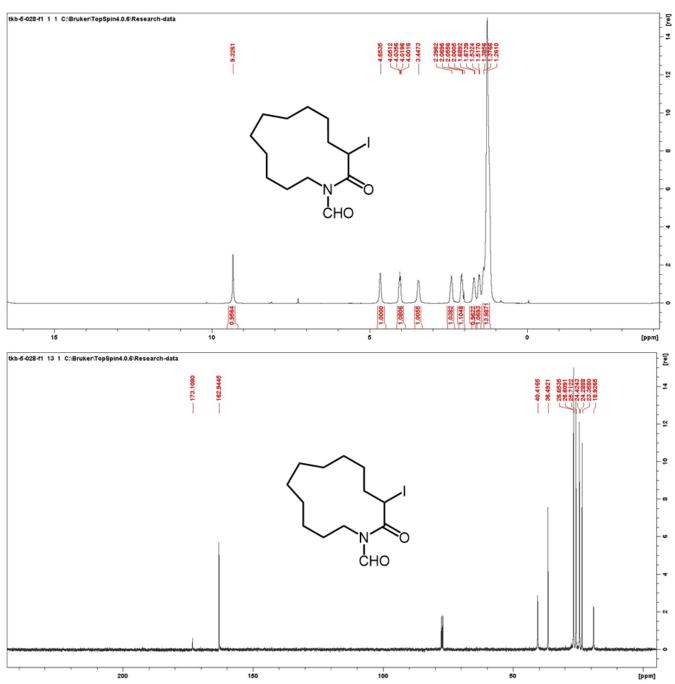
MHz, Chloroform-*d*) δ 8.16 (s, 1H), 7.71 (d, J = 15.8 Hz, 1H), 7.47 (d, J = 6.8 Hz, 2H), 7.20 (d, J = 6.8 Hz, 2H), 6.86 (d, J = 15.8 Hz, 1H), 4.60 (t, J = 7.3 Hz, 1H), 3.33 – 3.30 (m, 2H), 2.38 (s, 3H), 2.11 – 2.04 (m, 2H), 1.74 – 1.69 (m, 1H), 1.61 – 1.56 (m, 1H). ¹³C NMR (101 MHz, CDCl₃, rotamers) δ 193.7, 164.9, 161.8, 161.6, 144.7, 141.7, 131.4, 129.8, 128.8, 121.3, 37.2, 37.1, 31.6, 31.2, 29.4, 21.7, 19.3. HRMS calc for C₁₅H₁₇NO₂ 243.1259, found 243.1255.

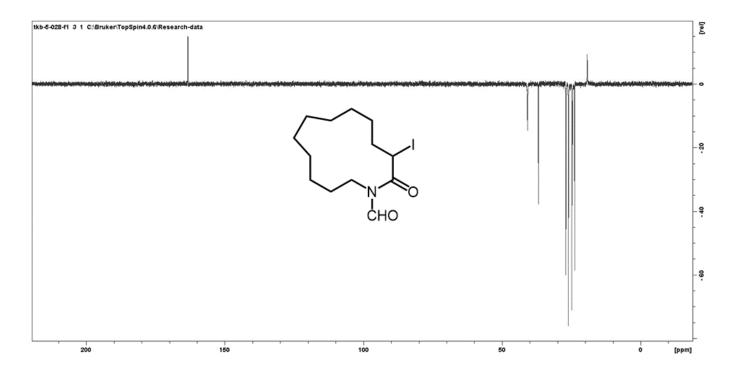

Note: Using General Procedure B, formamide 4x was obtained in 65% yield.


Compound 4v


Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (80:20). Pale-yellow oil. Yield = 255.2 mg, 83%. ¹H NMR (400 MHz, Chloroform-*d, mixture of rotamers*) δ 8.11 (s, 1H), 4.57 (t, J = 7.8 Hz, 1H), 3.31 – 3.26 (m, 2H), 2.06 – 1.97 (m, 2H), 1.68 – 1.59 (m, 1H), 1.56 – 1.49 (m, 1H), 1.10 – 1.04 (m, 21H). ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 181.3, 164.8, 161.6, 101.1, 99.4, 41.1, 37.2, 33.0, 32.6, 31.9, 29.3, 18.7, 18.6, 18.5, 11.3, 11.1. HRMS calc for C₁₇H₂₉NO₂Si 307.1968, found 307.1972.

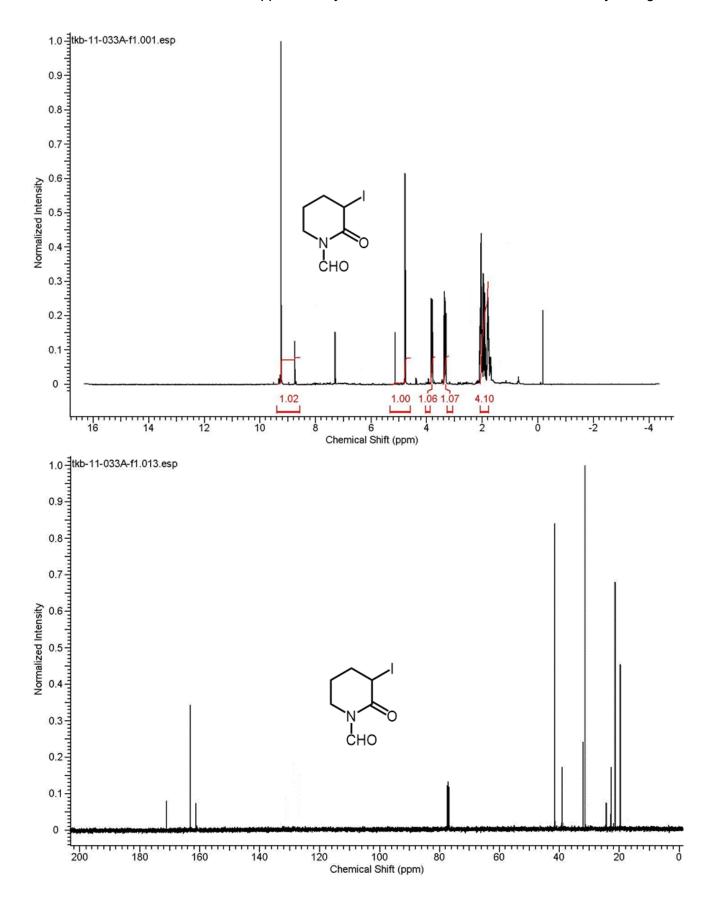
Compound 9

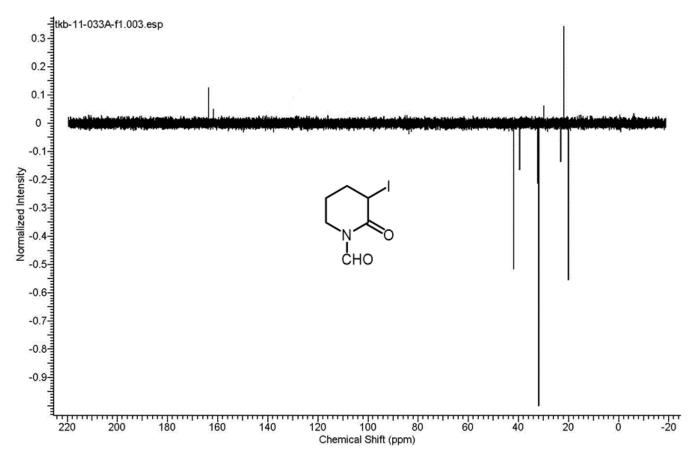

Prepared in 1 mmol scale using **General Procedure A** but without subsequent addition of the base. Yield = 281 mg, 96%. ¹H NMR (400 MHz, Chloroform-*d, mixture of rotamers*) δ 7.96 (s, 0.5H), 7.94 (s, 1H), 6.91 (t, J = 6.5 Hz, 0.5H), 6.69 (t, J = 6.5 Hz, 0.5H), 4.02 (s, 1H), 3.92 (s, 1H), 3.52 – 3.22 (m, 2H), 2.44 – 2.32 (m, 2H), 1.75 – 1.60 (m, 2H), 1.45 – 1.28 (m, 2H). ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 190.2, 189.6, 162.8, 162.5, 142.7, 139.4, 139.0, 138.6, 48.4, 43.5, 31.6, 28.6, 28.0, 27.6, 23.2, 23.0, 3.2, 1.1. HRMS calc for C₉H₁₂INO₂ 292.9913, found 292.9916.



Compound 11a

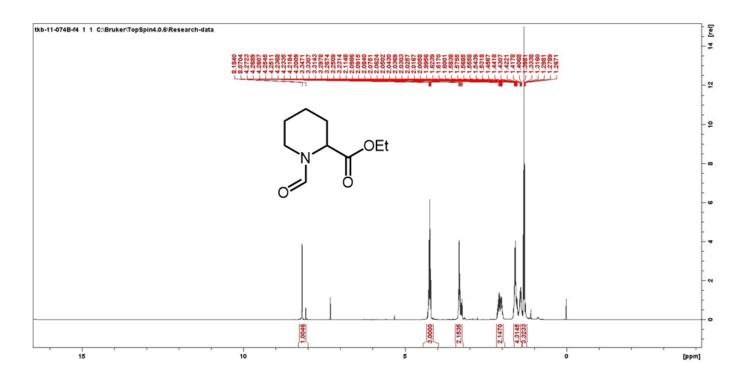
Prepared in 1 mmol scale using **General Procedure A** but without subsequent addition of the base. Yield = 302.0 mg, 86%. ¹H NMR (400 MHz, CDCl₃) δ 9.33 (s, 1H), 4.70 – 4.62 (m, 1H), 4.04 (dt, J = 14.2, 6.7 Hz, 1H), 3.45 (dd, J = 14.9, 7.5 Hz, 1H), 2.41 (dt, J = 14.0, 7.6 Hz, 1H), 2.13 – 2.01 (m, 1H), 1.69 – 1.26 (m, 16H). ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 162.9, 40.4, 36.5, 26.7, 26.6, 25.8, 25.7, 24.4, 24.3, 23.4, 18.9. HRMS calc for C₁₃H₂₂INO₂ 351.0695, found 351.0692.

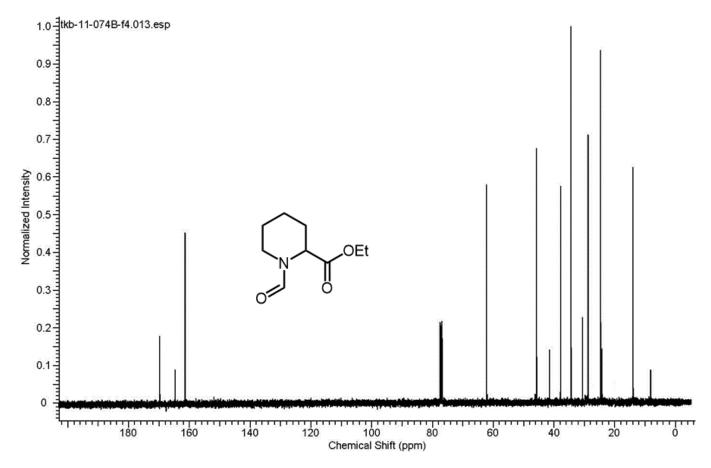


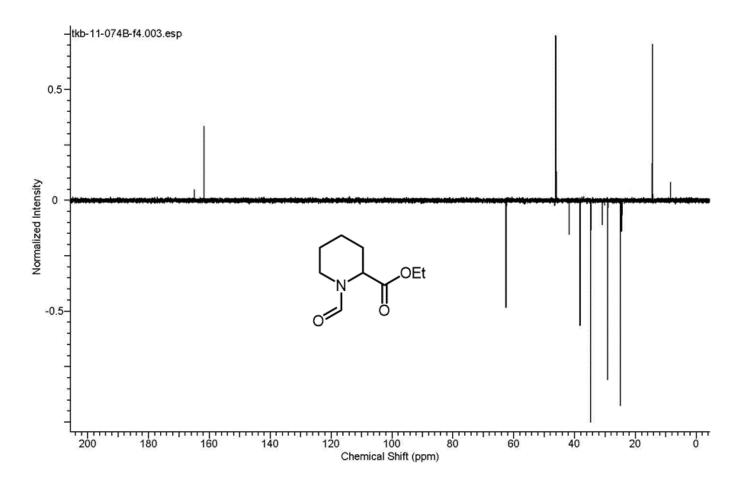

Compound 11b

Prepared in 1 mmol scale using **General Procedure A** but without subsequent addition of the base. Yield = 240.3 mg, 90%. Data as previously reported.³

Compound 11c

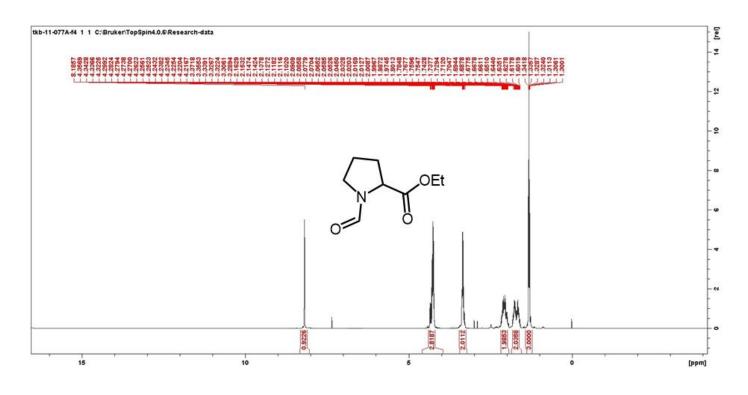

Prepared in 1 mmol scale using **General Procedure A** but without subsequent addition of the base. Yield = 225.2 mg, 89%. 1 H NMR (400 MHz, Chloroform-*d, mixture of rotamers*) δ 9.24 + 8.82 (s, 1H), 5.17 + 4.78 (dd, J = 5.0, 3.5 Hz, 1H), 3.82 (dd, J = 13.4, 5.5 Hz, 2H), 3.35 (dd, J = 13.5, 5.1 Hz, 2H), 2.04 – 1.91 (m, 4H). 13 C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 171.0, 163.2, 161.3, 41.6, 39.1, 32.1, 31.5, 22.8, 21.4, 19.7. HRMS calc for C₆H₈INO₂ 252.9600, found 252.9602.

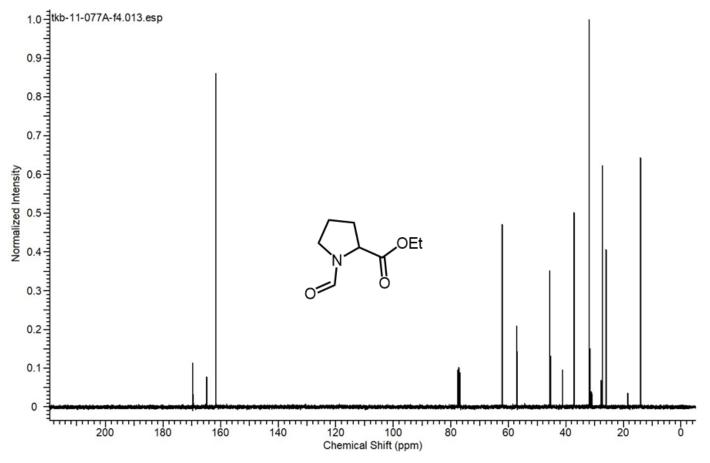


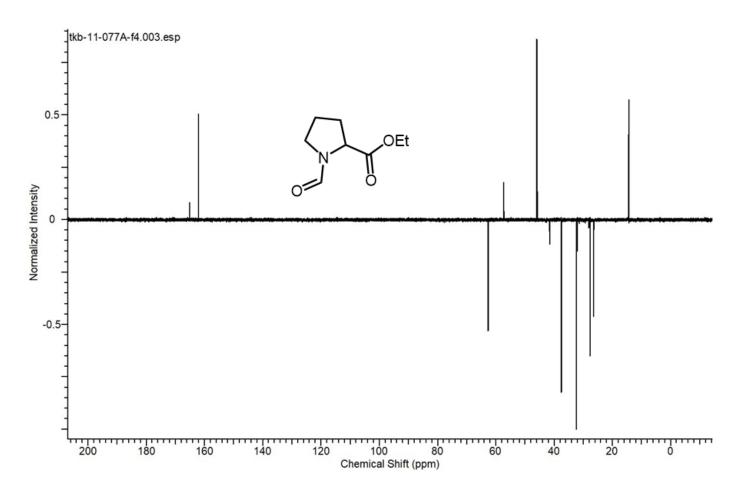


Compound 13a

Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (50:50). Pale-yellow oil. Yield = 161.1 mg, 87%. ¹H NMR (400 MHz, Chloroform-*d, mixture of rotamers*) δ 8.18 (s, 1H), 4.27 – 4.20 (m, 3H), 3.34 – 3.23 (m, 2H), 2.11 – 1.99 (m, 2H), 1.62 – 1.39 (m, 4H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 169.8, 164.7, 161.4, 62.2, 62.1, 45.9, 45.6, 41.4, 37.8, 34.4, 34.3, 30.6, 28.8, 24.6, 24.2, 14.0, 8.2. HRMS calc for C₉H₁₅NO₃ 185.1052, found 185.1055.







Compound 13b

Prepared in 1 mmol scale using **General Procedure A.** Purification: Flash chromatography on silica eluting with hexane/EtOAc (50:50). Pale-yellow oil. Yield = 143.8 mg, 84%. ¹H NMR (400 MHz, Chloroform-*d, rotamers*) δ 7.95 (s, 1H), 4.35 – 4.21 (m, 3H), 3.37 – 3.29 (m, 2H), 2.16 – 1.97 (m, 2H), 1.80 – 1.60 (m, 2H), 1.09 (t, J= 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, rotamers) δ 169.8, 169.6, 164.8, 161.7, 62.3, 62.2, 57.0, 45.5, 41.1, 37.2, 37.2, 32.1, 32.0, 29.0, 27.3, 27.2, 26.1, 14.1, 14.0. HRMS calc for C₈H₁₃NO₃ 171.0895, found 171.0891.

References

- 1. Beng, T. K.; Langevin, S.; Braunstein, H.; Khim, M., Regiocontrolled synthesis of (hetero)aryl and alkenyl dehydropyrrolidines, dehydropiperidines and azepenes by Ru-catalyzed, heteroatom-directed α -C-H activation/cross-coupling of cyclic enamides with boronic acids. *Org. Biomol. Chem.* **2016**, *14* (3), 830-834.
- 2. Bassler, D. P.; Alwali, A.; Spence, L.; Beale, O.; Beng, T. K., Cobalt-catalyzed arylation and alkenylation of alpha-bromo eneformamides and enecarbamates by cross-coupling with organic bromides: Application to the synthesis of functionalized piperidines and azepanes. *J. Organomet. Chem.* **2015**, 780, 6-12.
- 3. Beng, T. K.; Wilkerson-Hill, S. M.; Sarpong, R., Direct Access to Functionalized Azepanes by Cross-Coupling with α-Halo Eneformamides. *Org. Lett.* **2014**, *16* (3), 916-919.