Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Nano-Molar Level Fluorogenic and Oxidation-State Selective Chromogenic Dual Reversible Chemosensor for Multiple Targets Cu²⁺/S²⁻ and Fe³⁺/F⁻ ion

Sayed Muktar Hossain, Gaurab Kumar Dam, Sagarika Mishra and Akhilesh Kumar Singh*

School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India. E-mail: aksingh@iitbbs.ac.in

Contents:

Fig. S1 ESI-MS of L in methanol.	
Fig. S2 ¹ H NMR (400 MHz) of L in DMSO-d ₆ .	
Fig. S3 ¹³ C NMR (100 MHz) of L in DMSO-d ₆ .	
Fig. S4 FT-IR spectra of L in KBr pellet.	
Fig. S5 ESI-MS of Cu ^{II} L ₂ complex in MeOH.	
Fig. S6 FT-IR spectra of Cu ^{II} L ₂ complex in KBr pellet.	
Fig. S7 ESI-MS of Fe ^{III} L ₂ complex in MeOH.	
Fig. S8 FT-IR spectra of Fe ^{III} L ₂ complex in KBr pellet.	
Table S1 Bond lengths [Å] and angles [°] for CuL_2 Complex $[CuL_2](ClO_4)_2$.	
Fig. S9 UV-Vis spectra of L, Cu ^{II} L ₂ and Fe ^{III} L ₂ complex (20 μ M each individually) in DMSO solvent.	
Fig. S10 Intra-molecular non-covalent interactions (C-H… π and π … π) present in Cu ^{II} L ₂ complex.	
Fig. S11 Inter-molecular non-covalent interactions (C-H π and π π) present in Cu ^{II} L ₂ complex.	
Fig. S12 Job's plot for the binding of L with Fe ³⁺ absorption intensity at 340 nm in MeOH was plotted as a function of the molar ratio [Fe ³⁺] / ([L] + [Fe ³⁺]).	
Fig. S13 Detection limit of L for the recognition of Cu ²⁺ (λ_{ex} = 340 nm and λ_{em} = 407 nm).	

Fig. S1 ESI-MS of L in methanol.

Fig. S2 ¹H NMR (400 MHz) of **L** in DMSO-d₆.

Fig. S3 13 C NMR (100 MHz) of L in DMSO-d₆.

Fig. S4 FT-IR spectra of L in KBr pellet.

Fig. S5 ESI-MS of $Cu^{II}L_2$ complex in MeOH.

Fig. S6 FT-IR spectra of $Cu^{II}L_2$ complex in KBr pellet.

Fig. S7 ESI-MS of $Fe^{III}L_2$ complex in MeOH.

Fig. S8 FT-IR spectra of $Fe^{III}L_2$ complex in KBr pellet.

Cu(1)-N(8)	1.9511(18)
Cu(1)-N(3)	1.9660(17)
Cu(1)-N(6)	2.1147(18)
Cu(1)-N(1)	2.157(2)
Cu(1)-N(10)	2.258(2)
Cu(1)-N(5)	2.3022(19)
N(8)-Cu(1)-N(3)	179.30(8)
N(8)-Cu(1)-N(6)	78.10(7)
N(3)-Cu(1)-N(6)	101.43(7)
N(8)-Cu(1)-N(1)	103.32(8)
N(3)-Cu(1)-N(1)	77.28(7)
N(6)-Cu(1)-N(1)	102.92(8)
N(8)-Cu(1)-N(10)	76.18(7)
N(3)-Cu(1)-N(10)	104.23(7)
N(6)-Cu(1)-N(10)	153.77(7)
N(1)-Cu(1)-N(10)	88.00(8)
N(8)-Cu(1)-N(5)	103.31(7)
N(3)-Cu(1)-N(5)	76.12(7)
N(6)-Cu(1)-N(5)	86.47(7)
N(1)-Cu(1)-N(5)	153.06(7)
N(10)-Cu(1)-N(5)	94.46(8)

Table S1 Bond lengths [Å] and angles [°] for CuL_2 Complex $[CuL_2](ClO_4)_2$.

Fig. S9 UV-Vis spectra of L, $Cu^{II}L_2$ and $Fe^{III}L_2$ complex (20 μ M each individually) in DMSO solvent.

Fig. S10 Intra-molecular non-covalent interactions (C-H··· π and π ··· π) present in Cu^{II}L₂ complex.

Fig. S11 Inter-molecular non-covalent interactions (C-H... π and π ... π) present in Cu^{II}L₂ complex.

Fig. S12 Job's plot for the binding of **L** with Fe^{3+} absorption intensity at 340 nm in MeOH was plotted as a function of the molar ratio [Fe^{3+}] / ([L] + [Fe^{3+}]).

Detection limit. The detection limit was calculated on the basis of the fluorescence titration. The fluorescence emission intensity of **L** was plotted as a function of concentration of Cu^{2+} at 407 nm and the slope and intercept of plot was calculated. Then the detection limit was calculated with the following equation which was found to be very-very low 73 nM (Fig. S13).

Fig. S13 Detection limit of L for the recognition of Cu2+ (λ ex = 340 nm and λ em = 407 nm).