Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Material

Cu(II) complexes with tridentate sulfur and selenium ligands: catecholase and

hydrolysis activity

by

Daniele Cocco Durigon^a, Marcos Maragno Peterle^a, Adailton João Bortoluzzi^a, Ronny

Rocha Ribeiro^b, Antonio Luiz Braga^a, Rosely Aparecida Peralta^{a*}, Ademir Neves^{a*}

^a Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis – SC,

Brazil. CEP 88040-900.

^b Departamento de Química, Universidade Federal do Paraná, Curitiba – PR, Brazil. CEP 81531-980

*Corresponding author: ademir.neves@ufsc.br; rosely.peralta@ufsc.br

Figure S1 ¹H NMR (400 MHz, CDCl₃) spectrum of L_{se}.

Figure S2 ¹H NMR (400 MHz, CDCl₃) spectrum of L_{s.}

Figure S3 ¹³C NMR (100 MHz, CDCl₃) spectrum of L_{se}.

Figure S4 13 C NMR (100 MHz, CDCl₃) spectrum of L_{s.}

Figure S5 ⁷⁷Se NMR (76 MHz, CDCl₃) spectrum of L_{se.}

Figure S6 IR (KBr, cm⁻¹) of L_{se}.

Figure S7 IR (KBr, cm⁻¹) of L_{s.}

Figure S8 IR spectra overlay of the L_{Se} (red) and C_{Se} (black).

Figure S9 IR spectra overlay of the L_{s} (red) and C_{s} (black).

Crystallographic Data

2.036(3)	C1-C2	1.516(3)
2.2411(9	C1-H1A	0.9900
2.4076(8)	C1-H1B	0.9900
2.5196(3)	C2-Se1	1.968(2)
2.5196(3)	C2-H2A	0.9900
1.472(3)	C2-H2B	0.9900
1.473(3)	Se1-C3	1.925(2)
0.8718	C3-C4	1.384(3)
1.385(3)	С7-Н7	0.9500
1.385(3)	C8-H8	0.9500
0.9500	N1-Cu1-Cl1	164.62(8)
1.385(4)	N1-Cu1-Cl2	96.72(8)
0.9500	Cl1-Cu1-Cl2	98.66(3)
	2.036(3) 2.2411(9 2.4076(8) 2.5196(3) 2.5196(3) 1.472(3) 1.473(3) 0.8718 1.385(3) 1.385(3) 0.9500 1.385(4) 0.9500	2.036(3)C1-C22.2411(9C1-H1A2.4076(8)C1-H1B2.5196(3)C2-Se12.5196(3)C2-H2A1.472(3)C2-H2B1.473(3)Se1-C30.8718C3-C41.385(3)C7-H71.385(3)C8-H80.9500N1-Cu1-Cl11.385(4)N1-Cu1-Cl20.9500Cl1-Cu1-Cl2

Table S1 Bond lengths (A	Å) and angles (°) for C_{se}.
--------------------------	--

C6-C7	1.382(4)	N1-Cu1-Se1	82.36(3)
C6-H6	0.9500	Cl1-Cu1-Se1	92.312(13)
C7-C8	1.389(4)	Cl2-Cu1-Se1	110.164(10)
N1-Cu1-Se1 ⁱ	82.36(3)	Cu1-N1-H1	105.3
Cl1-Cu1-Se1 ⁱ	92.312(13)	N1-C1-C2	108.31(19
Cl2-Cu1-Se1 ⁱ	110.164(10)	N1-C1-H1A	110.0
Se1-Cu1-Se1 ⁱ	138.154(19)	C2-C1-H1A	110.
C1 ⁱ -N1-C1	114.2(2)	N1-C1-H1B	110.0
C1 ⁱ -N1-Cu1	111.67(14)	C2-C1-H1B	110.0
C1-N1-Cu1	111.67(14)	H1A-C1-H1B	108.4
C1 ⁱ -N1-H1	106.7	C1-C2-Se1	111.00(15)
C1-N1-H1	106.7	C1-C2-H2A	109.4
Se1-C2-H2A	109.4	C3-Se1-C2	99.13(10)
C1-C2-H2B	109.4	C3-Se1-Cu1	113.30(7)
Se1-C2-H2B	109.4	C2-Se1-Cu1	93.56(7)
H2A-C2-H2B	108.0	C4-C3-C8	120.2(2)
C4-C3-Se1	123.16(17)	C6-C5-H5	119.7
C8-C3-Se1	116.59(19)	C7-C6-C5	119.6(3)
C3-C4-C5	119.6(2)	C7-C6-H6	120.2
C3-C4-H4	120.2	C5-C6-H6	120.2
C5-C4-H4	120.2	C6-C7-C8	120.2(3)
C4-C5-C6	120.6(3)	С6-С7-Н7	119.
C4-C5-H5	119.7	С8-С7-Н7	119.9
C3-C8-C7	119.8(3)	С7-С8-Н8	120.1
C3-C8-H8	120.1		

Symmetry transformations used to generate equivalent atoms: (i) X,-Y+1.5, Z.

Cu1-N1	2.0141(18)	C3-C8	1.393(2)
Cu1-Cl1	2.2284(6)	C4-C5	1.391(2)
Cu1-Cl2	2.4100(6)	C4-H4	0.9500
Cu1-S1	2.4500(4)	C5-C6	1.382(3)
Cu1-S1 ⁱ	2.4501(4)	C5-H5	0.9500
N1-C1	1.4769(18)	C6-C7	1.382(3)

Table S2 Bond lengths (Å) and angles (°) for $\ensuremath{C_{S}}$

N1-C1 ⁱ	1.4770(18)	С6-Н6	0.9500
N1-H1	0.8722	C7-C8	1.393(3)
C1-C2	1.515(2)	С7-Н7	0.9500
C1-H1A	0.9900	С8-Н8	0.9500
C1-H1B	0.9900	C1-C2-S1	111.60(11)
C2-S1	1.8303(17)	C1-C2-H2A	109.3
C2-H2A	0.9900	S1-C2-H2A	109.3
C2-H2B	0.9900	C1-C2-H2B	109.3
S1-C3	1.7797(17)	S1-C2-H2B	109.3
C3-C4	1.393(2)	H2A-C2-H2B	108.0
N1-Cu1-Cl1	164.92(6)	C3-S1-C2	102.00(7)
N1-Cu1-Cl2	96.60(6)	C3-S1-Cu1	115.06(5)
Cl1-Cu1-Cl2	98.48(2)	C2-S1-Cu1	96.47(5)
N1-Cu1-S1	81.774(19)	C4-C3-C8	119.96(16)
Cl1-Cu1-S1	93.720(12)	C4-C3-S1	123.06(12)
Cl2-Cu1-S1	107.228(11)	C8-C3-S1	116.95(13)
N1-Cu1-S1 ⁱ	81.774(19)	C5-C4-C3	119.46(16)
Cl1-Cu1-S1 ⁱ	93.720(12)	C5-C4-H4	120.3
Cl2-Cu1-S1 ⁱ	107.228(11)	C3-C4-H4	120.3
S1-Cu1-S1 ⁱ	143.18(2)	C6-C5-C4	120.58(17)
C1-N1-C1 ⁱ	114.10(17)	C6-C5-H5	119.7
C1-N1-Cu1	111.51(10)	C4-C5-H5	119.7
C1 ⁱ -N1-Cu1	111.51(10)	C7-C6-C5	119.99(18)
C1-N1-H1	106.9	С7-С6-Н6	120.0
C1 ⁱ -N1-H1	106.9	С5-С6-Н6	120.0
Cu1-N1-H1	105.3	C6-C7-C8	120.17(18)
N1-C1-C2	107.26(13)	С6-С7-Н7	119.9
N1-C1-H1A	110.3	С8-С7-Н7	119.9
C2-C1-H1A	110.3	C7-C8-C3	119.78(17)
N1-C1-H1B	110.3	С7-С8-Н8	120.1
C2-C1-H1B	110.3	С3-С8-Н8	120.1
H1A-C1-H1B	108.5		

Symmetry transformations used to generate equivalent atoms: (i) X, -Y+1.5, Z

Figure S10 Electronic spectrum of C_{se} complex in acetonitrile solution in black and in methanol solution in red.

Figure S11 Electronic spectrum of C_s complex in acetonitrile solution in black and in methanol solution in red.

Figure S12 Electronic spectrum of C_{Se} in KBr pellet.

Figure S13 Electronic spectrum of $\mathbf{C}_{\mathbf{S}}$ in KBr pellet.

Figure S14 EPR Spectra of \mathbf{C}_{se} complex.

Figure S15 EPR Spectra of C_s complex.

Figure S16 Cyclic voltammetry of complex C_{se} in methanol. Conditions: working electrode (carbon); reference electrode (Ag/Ag⁺); auxiliary electrode (Pt); supporting electrolyte TBAPF₆ 0.1 mol L⁻¹.

Figure S17 Cyclic voltammetry of complex C_s in methanol. Conditions: working electrode (carbon); reference electrode (Ag/Ag⁺); auxiliary electrode (Pt); supporting electrolyte TBAPF₆ 0.1 mol L⁻¹.

Figure S18 ESI-MS spectrum (positive mode) in methanol of Cse.

Figure S19 Calculated (red) and experimental (black) isotopic distributions for the species present in the electrospray of ${\bf C}_{\rm Se.}$

Figure S20 ESI-MS spectrum (positive mode) in methanol of $C_{s.}$

Figure S21 Calculated (red) and experimental (black) isotopic distributions for the species present in the electrospray of $C_{s.}$

Figure S 22 Graph showing the pH dependence in the hydrolysis of 2,4- BDNPP by complexes $C_{Se} \; \mbox{and} \; C_S.$

Figure S 23 Dependence of substrate 2,4-BDNPP concentration for C_s and C_{se} complexes at 25 ° C and pH 6.5. MeCN/H₂O solution 50:50% v/v; [complex] = 7.0 x 10⁻⁵ mol L⁻¹; [substrate] = 4.0×10^{-4} to 6.0×10^{-3} and [Buffer]= 0.05 mol L⁻¹.

Figure S24 ESI-MS analysis of the C_{se} in the presence of the substrate 2,4-BDNPP an acetonitrile/water (1:1, v/v), the expanding spectrum refers to the species: $[Cu(L_{se})(OH)(2,4-BDNPP)] + H^+]$

Figure S25 ESI-MS analysis of the C_s in the presence of the substrate 2,4-BDNPP an acetonitrile/water (1:1, v/v), the expanding spectrum refers to the species: $[Cu(L_s)(OH)(2,4-BDNPP)] + H^+]$.

Figure S26 Spectral variation observed during the hydrolysis of the substrate 2,4-BDNPP promoted by the **C**_s complex. Conditions: pH 6.5; 25 °C; MeCN / H₂O solution (1: 1 v / v); [complex] = 8.0×10^{-5} mol L⁻¹; [substrate] = 8.0×10^{-3} mol L⁻¹; [buffer] = 0.05 mol L⁻¹. The duration of the spectral variation experiment was 4 hours with an interval of 10 minutes between two spectral scans.

Figure S27 Spectral variation observed during the hydrolysis of the substrate 2,4-BDNPP promoted by the C_{se} complex. Conditions: pH 6.5; 25 °C; MeCN / H₂O solution (1: 1 v / v); [complex] = 8.0×10^{-5} mol L⁻¹; [substrate] = 8.0×10^{-3} mol L⁻¹; [buffer] = 0.05 mol L⁻¹. The duration of the spectral variation experiment was 4 hours with an interval of 10 minutes between two spectral scans.

Figure S28 Spectral variation observed during the oxidation of the substrate 3,5-DTBC promoted by the C_{se} complex. Conditions: pH 7; 25 ° C; MeOH / H₂O solution (97: 3% v / v); [complex] = 3.0×10^{-5} mol L⁻¹; [substrate] = 3.0×10^{-3} mol L⁻¹; [buffer] = 0.03 mol L⁻¹. The duration of the spectral variation experiment was 1 hour with an interval of 5 minutes between two spectral scans.

Figure S29 Plots of v_0 versus pH of C_{se} complex for 3,5-DTBC substrate oxidation reaction at 25 ° C. MeOH / H₂O solution: 97: 3% v / v; [complex] = 2.0 x 10⁻⁵ mol L⁻¹; [substrate] = 2.4 x 10⁻³ mol L⁻¹; [buffer] = 0.03 mol L⁻¹. (MES - pH 5.5 at 6.5, TRIS - pH 7.0 at 10.0).

Figure S30 Plots of v₀ versus pH of C_s complex for 3,5-DTBC substrate oxidation reaction at 25 ° C. MeOH / H₂O solution 97: 3% v / v; [complex] = 2.0 x 10^{-5} mol L⁻¹; [substrate] = 2.4 x 10^{-3} mol L⁻¹; [buffer] = 0.03 mol L⁻¹. (MES - pH 5.5 at 6.5, TRIS - pH 7.0 at 10.0).

Figure S31 Dependence on oxidation reaction rate of 3,5 - DTBC with substrate concentration for C_s complex at 25 °C and pH 7. MeOH / H₂O solution 97:3% v / v; [complex] = 3.3 x 10⁻⁵ mol L⁻¹; [substrate] = 11.15 x 10⁻⁴ to 17.84 x 10⁻³ mol L⁻¹; [buffer] = 0.03 mol L⁻¹.

Figure S32 Dependence on oxidation reaction rate of 3,5 - DTBC with substrate concentration for C_{Se} complex at 25 ° C and pH 7. MeOH / H₂O solution 97: 3% v / v; [complex] = 2.0 x 10⁻⁵ mol L⁻¹; [substrate] = 9.57 x 10⁻⁴ to 16.7 x 10⁻³ mol L⁻¹; [buffer] = 0.03 mol L⁻¹.

Figure S33 Dependence on oxidation reaction rate of 3,5 - DTBC with substrate concentration for C_s complex at 25 °C and pH 7. MeOH / H₂O solution 97: 3% v / v; [complex] = 2.0×10^{-5} mol L⁻¹; [substrate] = 9.0×10^{-4} to 1.6×10^{-3} mol L⁻¹; [buffer] = 0.03 mol L⁻¹.

Figure S34 Dependence on oxidation reaction rate of 3,5-DTBC with substrate concentration for C_{Se} complex at 25 °C and pH 7. MeOH / H₂O solution 97: 3% v / v; [complex] = 2.0 x 10⁻⁵ mol L⁻¹; [substrate] = 9.0 x 10⁻⁴ to 1.6 x 10⁻³ mol L-1; [buffer] = 0.03 mol L⁻¹.