Electronic Supporting Information (ESI)

for

Zn Capped Al₂O₃ and TiO₂ Nanoporous Arrays as pH-Sensitive Drug Delivery Systems: A Combined Experimental and Simulation Study

Rokhsareh Khodabandeh,^a Fatemeh Mohammadpour,^{b,*} Amin Reza Zolghadr,^{a,*} and Axel Klein^{a,c*}

a Department of Chemistry, Shiraz University, Shiraz, 71946-84795, Iran

^b Department of Physics, Farhangian University, Tehran, Iran

^c Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany

*Corresponding authors: <u>f.mohammadpour60@gmail.com</u> (F.M); <u>arzolghadr@shirazu.ac.ir</u>; Tel: +98 713 613 7157, Fax: +98 713 646 0788, ORCID: 0000-0002-6289-3794 (A.R.Z); <u>axel.klein@uni-koeln.de</u>; Tel.: +49-221-470-4006, ORCID: 0000-0003-0093-9619 (A.K.)

Contents

A) Supporting Figures

Fig. S1 Radial distribution functions g(r) of of vitamin C with water confined inside the Al₂O₃ and TiO₂ nanopores at different simulation times.

Fig. S2 SEM images of TiO₂(40nm) nanoporous arrays

Fig. S3 SEM images of Zn sputtered $Al_2O_3(100nm)$ nanoporous arrays, top-view (A, B) and cross-section (C).

Fig. S4 SEM images of Zn sputtered TiO₂(40n) nanoporous arrays.

Fig. S5 EDX spectrum and quantitative data (inset) of vitamin C loaded Al₂O₃(40nm) nanoporous arrays.

Fig. S6 EDX spectrum and quantitative data (inset) of vitamin C loaded TiO₂(40nm) nanoporous arrays.

Fig. S7 Representative MD simulation snapshots of water loading into a Al₂O₃ nanopore.

Fig. S8 Representative MD simulation snapshots of water loading into a TiO₂ nanopore.

Fig. S9 Calculated number of density profiles along the x-direction of water inside the TiO_2 and Al_2O_3 nanopores at different simulation times.

Fig. S10 Calculated mean-square displacement of the geometrical centers of water and vitamin C for confined vitamin C solutions in the Al_2O_3 and TiO_2 nanopores.

Fig. S11 Calculated mean-square displacement of geometrical centers of confined pure water in the Al_2O_3 and TiO_2 nanopores.

Fig. S12 Calculated radial distribution functions g(r) of O atoms of vitamin C with O atoms of the Al₂O₃ and TiO₂ nanopores.

Fig. S13 Calculated radial distribution functions g(r) of water H atoms with O atoms of vitamin C in the Al₂O₃ and TiO₂ nanopores.

Fig. S14 Calculated radial distribution functions g(r) between H atoms of a vitamin C molecule with O atoms of another vitamin C molecules in an Al₂O₃ nanopore.

Fig. S15 Calculated radial distribution functions g(r) of H atoms of a vitamin C molecule with O atoms of another vitamin C molecule in a TiO₂ nanopore.

B) Supporting Tables

Table S1 DFT-calculated atomic charges for vitamin C

A) Supporting Figures

Fig. S1 Radial distribution functions g(r) of vitamin C with water confined inside the Al₂O₃ and TiO₂ nanopores at different simulation times.

Fig. S2 SEM images of $TiO_2(40nm)$ nanoporous arrays from potentiostatic anodisation, cross-section (A) and top views in low magnification (B) and high magnification (C).

Fig. S3 SEM images of Zn sputtered Al₂O₃(100nm) nanoporous arrays, top-view (A, B) and cross-section (C).

Fig. S4 SEM images of Zn sputtered $TiO_2(40nm)$ nanoporous arrays from the potentiostatic anodisation method, top view (A, B) and cross-section (C).

Fig. S5 EDX spectrum and quantitative data (inset) of vitamin C loaded Al₂O₃(40nm) nanoporous arrays.

Fig. S6 EDX spectrum and quantitative data (inset) of vitamin C loaded TiO₂(40nm) nanoporous arrays.

Fig. S7 Representative MD simulation snapshots of water loading into a Al₂O₃ nanopore.

g. S8 Representative MD simulation snapshots of water loading into a TiO₂ nanopore.

Fig. S9 Calculated number of density profiles along the x-direction of water inside the TiO_2 and Al_2O_3 nanopores at different simulation times.

Fig. S10 Calculated mean-square displacement of the geometrical centers of water and vitamin C for confined vitamin C solutions in the Al_2O_3 and TiO_2 nanopores.

Fig. S11 Calculated mean-square displacement of geometrical centers of confined pure water in the Al_2O_3 and TiO_2 nanopores.

Fig. S12 Calculated radial distribution functions g(r) of O atoms of vitamin C with O atoms of the Al₂O₃ and TiO₂ nanopores.

Fig. S13 Calculated radial distribution functions g(r) of water H atoms with O atoms of vitamin C in the Al₂O₃ and TiO₂ nanopores.

Fig. S14 Calculated radial distribution functions g(r) between H atoms of a vitamin C molecule with O atoms of another vitamin C molecules in an Al₂O₃ nanopore.

Fig. S15 Calculated radial distribution functions g(r) of H atoms of a vitamin C molecule with O atoms of another vitamin C molecule in a TiO₂ nanopore.

B) Supporting Tables

Table S1 DFT-calculated atomic charges for vitamin C

atom	q/e B3LYP NBO
01	-0.750
02	-0.738
03	-0.543
04	-0.588
05	-0.683
06	-0.664
H1	0.468
H2	0.478
H5	0.494
H6	0.490
C1	0.292
C2	0.281
C3	0.300
C4	0.749
C5	0.117
C6	0.297