Supporting Information

Supramolecular organization and optical properties of BODIPY derivatives in Langmuir–Schaefer films

Yu.S. Marfin,^a S.D. Usoltsev,^a A.V. Kazak,^{b,c,d@} O.S. Vodyanova,^a N.E. Novikova,^d I.A. Verin,^d E.V. Rumyantsev,^a I. V. Kholodkov^e and D.A. Merkushev^a

[a] Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia.

[b] Nanomaterials Research Institute, Ivanovo State University, 153025 Ivanovo, Russia.

[c] Moscow Region State University, 141014, Mytishi, Russia.

[d] Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research Center, Russian Academy of Sciences, 119333, Moscow, Russia.

[e] Research Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, 153000, Ivanovo, Russia.

@Corresponding author E-mail: alexkazak86@gmail.com

Contents list

Figure S1. UV–Vis EAS (solid lines) and fluorescence spectra (dashed lines) of investigated dyes in benzene; numeration indicates the spectra of the corresponding compounds

Figure S2. Surface pressure–area (π –A) isotherms of investigated dyes during LS-films deposition; numeration indicates the spectra of the corresponding compounds.

Figure S3. Correlation of films' optical absorbance with number of BODIPY layers: 2 – films of the compound **2**, 3 – films of the compound **3** ($R^2 = 0.9699$), 4 – films of the compound **4** ($R^2 = 0.9264$).

Figure S4. Absorption spectra of BODIPYs 1-4 (number of the compound is in the top right corner) films with different number of dye layers.

Figure S5. The potential energy surfaces of BODIPY dyes as a function of 8-substituent rotation and optimized geometries for **1** in lowest and highest energy points.

Figure S6. Microphotographs of compound 2 thin films on glass surface (1.0 mm).

Figure S7. Microphotographs of compound 3 thin films on glass surface (1.0 mm).

Figure S8. Microphotographs of compound 4 thin films on glass surface (1.0 mm).

Figure S9. Fluorescent microphotographs of compound **3** thin films on glass surface (1.0 mm), $\lambda_{ex} = 410-490$ nm.

Figure S10. Fluorescent microphotographs of compound **4** thin films on glass surface (1.0 mm), λ_{ex} = 410–490 nm.

Table S1. Fluorescence intensity changes after 10 min exposition in solvent vapor for compound 2.

Table S2. AFM images and experimental details for LB-films.

Table S3. Crystal data, details of data collection and parameters of structure refinement for BODIPY **4** single crystal.

Table S4. Atomic coordinates and isotropic equivalent atomic displacement parameters (U_{iso}) in the structure of BODIPY **4** single crystal.

Table S5. Main interatomic distances in the structure of BODIPY 4 single crystal.

Figure S1. UV–Vis EAS (solid lines) and fluorescence spectra (dashed lines) of investigated dyes in benzene; numeration indicates the spectra of the corresponding compounds (data reprinted from the following article: Y. S. Marfin, O. S. Vodyanova, D. A. Merkushev, S. D. Usoltsev, V. O. Kurzin and E. V. Rumyantsev, J. Fluoresc., 2016, 26, 1975–1985.)

Figure S2. Surface pressure–area (π –A) isotherms of investigated dyes during LS-films deposition; numeration indicates the spectra of the corresponding compounds.

Figure S3. Correlation of films' optical absorbance with number of BODIPY layers: 2 – films of the compound 2, 3 – films of the compound 3 ($R^2 = 0.9699$), 4 – films of the compound 4 ($R^2 = 0.9264$).

Figure S4. Absorption spectra of BODIPYs **1-4** (number in the top right corner) films with different number of dye layers.

Table S1. Fluorescence intensity changes after	10 min exposition in solvent	vapor for compound 2.
--	------------------------------	-----------------------

Solvent	Relative fluorescence $I_{max(solvent)}/I_{max(dry film)}$
C ₂ H ₅ OH (Ethanol)	0.997
C ₆ H ₁₂ (Cyclohexane)	0.954
C ₆ H ₆ (Benzene)	1.006
CHCl ₃ (Chloroform)	1.017

Figure S5. The potential energy surfaces of BODIPY dyes as a function of 8-substituent rotation and optimized geometries for *1* in lowest and highest energy points.

1 layer

3 layers

5 layers

Figure S6. Microphotographs of compound 2 thin films on glass surface (1.0 mm).

10 layers

30 layers

3 layers

10 layers

Figure S7. Microphotographs of compound 3 thin films on glass surface (1.0 mm).

30 layers

3 layers

10 layers

Figure S8. Microphotographs of compound *4* thin films on glass surface (1.0 mm).

5 layers

1 layer

Figure S9. Fluorescent microphotographs of compound *3* thin films on glass surface (1.0 mm), $\lambda_{ex} = 410-490$ nm.

10 layers30 layersI layerI agers1 layer3 layers5 layers

Figure S10. Fluorescent microphotographs of compound 4 thin films on glass surface (1.0 mm), $\lambda_{ex} = 410-490$ nm.

10 layers

30 layers

Compound 3				
1 layer				
Amount of sampling	65536			
Max	46.374 nm			
Min	0 nm			
Peak-to-peak, Sy	46.374 nm			
Ten point height, Sz	22.1604 nm			
Average	5.57531 nm			
Average Roughness, Sa	0.474706 nm			
Second moment	5.6537			
Root Mean Square, Sq	0.938246 nm			
Surface skewness, Ssk	12.4259			
Coefficient of kurtosis, Ska	439.095			
Entropy	4.72368			
Redundance	0.14174			
		18 20		45

Table S2. AFM images and experimental details for LB-films.

10 layers

Amount of sampling	65536
	- / - / -
Max	24.249 nm
Min	0 nm
	0 1111
Peak-to-peak, Sy	24.249 nm
Ten point height, Sz	12.3458 nm
F 8, ~-	
Average	17.9652 nm

Average Roughness, Sa	0.93784 nm	
Second moment	18.0229	
Root Mean Square, Sq	1.44016 nm	
Surface skewness, Ssk	-2.77385	
Coefficient of kurtosis, Ska	15.0205	
Entropy	5.57183	
Redundance	-0.22752	

Compound 4

1 layer				
Amount of sampling	65536			
Max	54.162 nm			
Min	0 nm			
Peak-to-peak, Sy	54.162 nm			
Ten point height, Sz	26.1606 nm			
Average	6.72587 nm			
Average Roughness, Sa	1.32176 nm			
Second moment	7.02489			
Root Mean Square, Sq	2.02776 nm			
Surface skewness, Ssk	5.2314			
Coefficient of kurtosis, Ska	76.4763			
Entropy	6.17343			
Redundance	-0.0769513			

Amount of sampling	65536	
Max	18.408 nm	
Min	0 nm	
Peak-to-peak, Sy	18.408 nm	
Ten point height, Sz	9.1863 nm	
Average	14.2484 nm	
Average Roughness, Sa	0.886185 nm	
Second moment	14.3273	
Root Mean Square, Sq	1.50176 nm	
Surface skewness, Ssk	-3.65142	
Coefficient of kurtosis, Ska	24.0364	
Entropy	5.5749	
Redundance	-0.35258	

Compound	C ₃₃ H ₃₁ BF ₂ N ₂
<i>Т</i> , К	293
M	504.4
Crystal system, space group, Z	Monoclinic, $P2_1/n$, 4
<i>a</i> , <i>b</i> , <i>c</i> , Å	7.8921(3), 25.8630(10), 15.1136(8)
β, deg	92.072(4)
V, A^3	3082.8(3)
D_x , g/cm ³	1.087
Diffractometer	Xcalibur, Eos S2 CCD
Radiation; λ, Å	MoK_{a} ; 0.71069
Scan mode	ω
μ, mm ⁻¹	0.038
Crystal size max × mid × min, mm	$0.638 \times 0.261 \times 0.129$
Absorption correction; T_{\min} , T_{\max}	Analytical; 0.985, 0.997
θ_{max} , deg	25.27
Limiting indices	$-9 \le h \le 8, -31 \le k \le 31, -18 \le l \le 18$
Number of reflections: measured/unique (N_1) ,	68042/5558, 0.147/2278
R_{int} /with $I > 3\sigma(I)$ (N_2)	
Refinement method	Least squares on F
Weighting scheme	$1/\sigma^2(F) + 0.0036F^2$
Number of parameters	343
R/R_w for N_1	0.1741/0.1397
R/R_w for N_2	0.0626/0.1020
$S_{ m all}$	1.19
$\Delta \rho_{min} / \Delta \rho_{max}$, e/Å ³	-0.28/0.42
Programs	CrysAlis, JANA2006

Table S3. Crystal data, details of data collection and parameters of structure refinement for BODIPY 4 single crystal.

Table S4. Atomic coordinates and isotropic equivalent atomic displacement parameters (U_{iso}) in the structure of BODIPY 4 single crystal

Atom	x/a	y/b	z/c	$U_{\rm iso}$, Å ²
F1	0.3070(3)	0.6513(1)	0.8400(2)	0.086(1)
F2	0.1687(3)	0.6592(1)	0.7079(2)	0.089(1)

N1	0.3538(3)	0.7277(1)	0.7550(2)	0.050(1)
N2	0.0809(3)	0.7132(1)	0.8273(2)	0.050(1)
B1	0.2295(6)	0.6858(2)	0.7821(3)	0.056(2)
C1	0.3975(5)	0.8741(2)	1.0435(3)	0.055(1)
C2	0.3694(4)	0.9274(1)	1.0601(2)	0.050(1)
C3	0.3353(4)	0.8513(1)	0.9692(2)	0.048(1)
C4	0.4299(5)	0.9514(2)	1.1382(3)	0.067(2)
C5	0.0885(5)	0.8868(2)	0.7626(3)	0.066(2)
C6	-0.1618(5)	0.7281(2)	0.8960(2)	0.055(1)
C7	0.0663(5)	0.9389(2)	0.7745(3)	0.073(2)
C8	-0.3236(5)	0.7171(2)	0.9411(3)	0.078(2)
С9	0.4022(6)	1.0036(2)	1.1521(3)	0.077(2)
C10	-0.0547(5)	0.6903(2)	0.8613(2)	0.059(2)
C11	0.5804(4)	0.7678(2)	0.6999(2)	0.058(2)
C12	0.5004(4)	0 7204(2)	0 7131(2)	0.055(1)
C13	0 1738(4)	0.8566(1)	0.8251(2)	0.048(1)
C14	-0.0870(4)	0.7750(2)	0.8221(2) 0.8841(2)	0.053(1)
C15	0 2406(4)	0.8795(1)	0.0011(2) 0.9027(1)	0.025(1)
C16	0.2790(4)	0.0793(1)	0.9027(1) 0.9958(2)	0.048(1)
C17	0.5134(6)	0.8628(2)	0.7324(3)	0.076(2)
C18	0.2734(5)	0.8060(2)	0.7350(2)	0.070(2)
C19	0.3168(56)	1.0330(2)	1.0873(3)	0.075(2)
C20	0.7425(5)	0.7757(2)	0.6523(3)	0.073(2)
C21	0.7123(3) 0.7117(5)	0.7737(2) 0.7886(2)	0.5566(3)	0.075(2)
C^{22}	-0.1573(5)	0.7000(2) 0.8259(2)	0.9300(3) 0.9146(3)	0.075(2)
C23	-0.2967(6)	0.7095(3)	1.0411(4)	0.073(2) 0.143(3)
C24	0.2907(0)	0.7032(3)	0.9153(2)	0.048(1)
C25	-0.0770(5)	0.9332(1) 0.6327(2)	0.9133(2) 0.8623(4)	0.089(2)
C26	0.0770(5)	1.0392(2)	0.0023(1) 0.9438(4)	0.009(2)
C27	0.1062(5)	1.0372(2) 1.0177(2)	0.8687(3)	0.074(2)
C28	0.5596(8)	0.6681(2)	0.6007(3) 0.6878(3)	0.071(2)
C29	0.2543(5)	1 0101(2)	1.0092(3)	0.000(2)
C_{20}	0.23+3(5) 0.1272(5)	0.9635(2)	0.8513(3)	0.057(1)
C31	0.1272(3) 0.3353(4)	0.9033(2) 0.7811(1)	0.7695(2)	0.000(2)
C32	0.0555(4)	0.7665(2)	0.7099(2) 0.8398(2)	0.049(1)
C33	0.0001(4) 0.1934(4)	0.7005(2) 0.7995(1)	0.8398(2) 0.8108(2)	0.047(1)
HIC1	0.1554(4)	0.8540	1.0853	0.047(1)
H1C3	0.4020	0.8150	0.9606	0.000
H1C4	0.3340	0.9315	1 1824	0.050
H1C5	0.435	0.8708	0 7094	0.080
H1C7	0.0133	0.9587	0.7091	0.087
H1C8	-0.3757	0.6867	0.9157	0.007
H2C8	-0.4021	0 7449	0.9300	0.094
H1C9	0.4418	1 0195	1 2063	0.093
H1C17	0 4929	0.8777	0 7892	0.091
H2C17	0.4929	0.8685	0 7181	0.091
H3C17	0.4402	0.8788	0.6882	0.091
H1C19	0 3009	1 0694	1 0965	0.091
H1C20	0.8071	0.8029	0.6807	0.020
H2C20	0.8107	0.7450	0.6574	0.088
H1C21	0.8176	0 7888	0 5273	0.116
111021	0.01/0	0.7000	0.5215	0.110

H2C21	0.6376	0.7633	0.5296	0.116
H3C21	0.6601	0.8222	0.5515	0.116
H1C22	-0.1441	0.8515	0.8693	0.091
H2C22	-0.2754	0.8220	0.9261	0.091
H3C22	-0.0971	0.8368	0.9677	0.091
H1C23	-0.3941	0.6928	1.0643	0.172
H2C23	-0.1981	0.6885	1.0526	0.172
H3C23	-0.2809	0.7426	1.0691	0.172
H1C25	-0.1774	0.6241	0.8932	0.107
H2C25	-0.0877	0.6201	0.8026	0.107
H3C25	0.0197	0.6170	0.8917	0.107
H1C26	0.1501	1.0755	0.9532	0.089
H1C27	0.0474	1.0389	0.8255	0.089
H1C28	0.6799	0.6688	0.6804	0.103
H2C28	0.5336	0.6438	0.7334	0.103
H3C28	0.5035	0.6578	0.6332	0.103

Note. All sites are fully occupied.

Table S5. Main interaton	ic distance	s in the structure	of BODIPY 4	single crystal1.
--------------------------	-------------	--------------------	-------------	------------------

Bond	Distance, Å	Bond	Distance, Å
B1–F1	1.378(5)	C10–C25	1.501(6)
-F2	1.385(5)	C11–C12	1.395(6)
-N1	1.528(6)	C18	1.391(6)
-N2	1.551(5)	-C20	1.504(5)
N1-C12	1.352(5)	C12–C28	1.488(6)
-C31	1.405(5)	C13–C15	1.401(5)
N2-C10	1.343(5)	-C33	1.499(5)
-C32	1.396(5)	C14–C22	1.508(7)
C1–C2	1.421(5)	-C32	1.420(5)
-C3	1.339(5)	C15–C24	1.417(5)
C2–C4	1.401(6)	C16–C24	1.439(5)
-C16	1.414(5)	-C29	1.396(5)
C3–C15	1.430(5)	C17–C18	1.497(6)
C4–C9	1.385(7)	C18–C31	1.417(5)
C5–C7	1.373(6)	C19–C29	1.395(6)
-C13	1.382(5)	C20–C21	1.496(6)
C6–C8	1.497(5)	C24–C30	1.411(5)
-C10	1.406(6)	C26–C27	1.336(7)
-C14	1.362(6)	-C29	1.404(6)
C7–C30	1.373(6)	C27–C30	1.436(6)
C8–C23	1.531(7)	C31–C33	1.386(5)
С9–С19	1.394(7)	C32–C33	1.401(5)