A new chloro-substituted dicyanoisophorone-based near-infrared fluorophore with largre Stokes shift and its application for detecting cysteine in cells and *in vivo*

Yu Wang^{a#}, Wenda Zhang^{b#}*, Ting Ma^{c#}, Duolu Li^b, Yubing Zhou^b, Xiaojian Zhang^{b,d,e*}, Jianbo Gao^{a*}.

a, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University,

No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China

b, Department of Radiology, The First Affiliated Hospital of Zhengzhou University,

No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China

c, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China

d, Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China

e, Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, China

Corresponding authors

* Wenda Zhang: E-mail: zhangwenda16@126.com

* Xiaojian Zhang: E-mail: zhangxiaojian15@126.com

* Jianbo Gao: E-mail: gaojianbo63@126.com

These authors contributed equally.

Contents

Table S1. Some similar acrylate-functionalized probes for the detection of cysteine.

Figure S1. Fluorescence intensity at different pH conditions. ($\lambda ex = 490 \text{ nm}$, $\lambda em = 655 \text{ nm}$).

Figure S2. The MTT assay

Figure S3-13. The respective spectrums of ¹H NMR, ¹³C NMR, MS.

				Stoke		Detecti	
	Probe	Solvent	Time	s shift	Analyte	on	Referenc
		(pH=7.4)	(min)	(nm		Limit	e
)		(µM)	
1	$\begin{array}{c} N \\ \downarrow \\$	PBS	25	165	Cys	0.173	This work
	nm						
2	$\frac{\lambda_{ex/em} = 503/631}{nm}$	DMSO-PBS (1/1,v/v)	15	128	Cys	0.26	[1]
3	$\lambda_{ex/em} = 450/520$ nm	EtOH-water (2/3, v/v)	60	70	Cys Hcy	0.50	[2]
4	$\lambda_{ex/em} = 452/547$ nm	DMSO- PBS (containing 0.2% DMSO)	7	95	Cys Hcy	1.8	[3]
5	$\lambda_{ex/em} = 503/525$	CH ₃ CN-H ₂ O (1:1,v/v)	150	22	Cys	0.037	[4]
6	$\lambda_{ex/em} = 410/595$ nm	DMSO-PBS (containing 0.2%DMSO)	10	185	Cys	0.95	[5]

 Table S1. Some similar acrylate-functionalized probes for the detection of cysteine.

7	$\lambda_{ex/em} = 560/676 \text{ nm}$	DMSO-PBS (1/1,v/v)	20	116	Cys Hcy	0.081	[6]
8	$\lambda_{ex/em} = 585/635$	DMSO-PBS (1/1,v/v)	30	50	Cys Hcy	0.3	[7]
9	$\lambda_{ex/em} = 370/474$ nm	EtOH-PBS (3/7, v/v)	no date	104	GSH	0.082	[8]
10	$\lambda_{ex/em} = 377/487$	EtOH-H ₂ O (2:8, v/v)	40	110	Cys Hcy	o date	[9]
11	$\lambda_{ex/em} = 420/454$ nm	EtOH- HEPES (2:8, v/v)	40	34	Cys GSH	0.657	[10]
12	$\lambda_{ex/em} = 458/498$ nm	DMSO-PBS (1/1,v/v)	15	40	Cys Hcy GSH	0.02	[11]

Figure S1. Fluorescence intensity at different pH conditions. ($\lambda_{ex} = 490 \text{ nm}, \lambda_{em} = 655 \text{ nm}$).

Figure S2. The MTT assay

Figure S5. ESI-MS analysis the product of CYS-1 with cysteine.

Figure S6. ESI-MS analysis of DCM-COH.

Figure S8. ¹H NMR spectra (500 MHz) of compound DCI-OH in DMSO.

Figure S9. ¹H NMR spectra (500 MHz) of compound DCM-COH in DMSO.

Figure S10. ¹H NMR spectra (101 MHz) of compound DCM-COH in CDCl₃.

Figure S11. ¹H NMR spectra (500 MHz) of compound CYS-1 in DMSO

Figure S12. ¹³C NMR spectra (500 MHz) of compound CYS-1 in DMSO.

Figure S13. ¹³C NMR spectra (101 MHz) of compound DCI-COH in CDCl₃.

References

[1] Zhang, W.; Liu, J.; Yu, Y.; Han, Q.; Cheng, T.; Shen, J.; Wang, B.; Jiang, Y. Talanta. 185 (2018) 477-482.

[2] L.G. Wang, Q. Zhou, B.C Zhu, L.G. Yan, Z.M. Ma, B. Du, X.L. Zhang, Dyes Pigments. 95 (2012) 275-279.

[3] J.M. Shi, Y.J Wang, X.L. Tang, W. Liu, H. Jiang, W. Dou, W.S. Liu. Dyes Pigments. 100 (2014) 255-260.

[4] W.L. Fan, X.X Huang, X.M. Shi, Z. Wang, Z.L. Lu, C.H. Fan, Q.B. Bo. SPECTROCHIM ACTA A 173 (2017)
 918-923.

[5] G.T. Liu, D. Liu, X. Han , X.L. Sheng, Z.Q. Xu, S.H Liu, L.T. Zeng, J. Yin. Talanta. 170 (2017) 406-412.

[6] D.H. Yu, Q. Zhang, S.S. Ding, G.Q. Feng, RSC Adv. 4 (2014) 46-61.

[7] J.Ting, H.J. Yang, K. Li, K. Yu, X. Q. Yu. Sensors Actuators B Chem. 214 (2017) 92-100.

[8] S.Q. Wang, Q.H. Wu, H.Y. Wang, B. X, Zhao. Biosens. Bioelectron. 55 (2014) 386-390.

[9] X.F. Yang, Y.X. Guo, Robert M, Strongin. Angew Chem Int Ed Engl. 50 (2011) 10690-10693.

[10] X. Dai, Q.H. Wu, P.C.Wang, J. Tian, Y. Xu, S.Q. Wang J. Y. Miao, B.X. Zhao. Biosens. Bioelectron. 59 (2014) 35-39.

[11] Q.Zhou, D.H. Yu, S.S. Ding, G.Q. Feng. Dyes Pigments.50 (2014) 14002-14005.