Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Insight into 6-Aminopenicillanic Acid Structure and Study of the Quantum Mechanical Calculations as the Acid-Base site onto γ-Fe₂O₃@SiO₂ Core-Shell Nanocomposites and Efficient Catalysts in Multicomponent Reactions

Farveh Saberi^a, Somayeh Ostovar^{*a}, Roya Behazin^a, Alireza Rezvani^a, Ali Ebrahimi^a and Hamid Reza Shaterian^a

^aDepartment of Chemistry, University of Sistan and Baluchestan, Faculty of Sciences, PO Box 98135-674, Zahedan, (Iran).

Fig. S1: XRD pattern of γ -Fe₂O₃, γ -Fe₂O₃@SiO₂ and 6-APA/ γ -Fe₂O₃@SiO₂

Table S1. Elemental distribution (atomic %) of γ -Fe₂O₃/SiO₂-STZ.

Sample	Fe	0	Si	С	S	N	Total
6-APA/γ-Fe ₂ O ₃ @SiO ₂	47	37.09	4.64	5.39	0.49	5.25	100

Fig. S2: Thermogravimetric (TG) and differential thermogravimetric (DTG) analyses of 6-APA/ γ -Fe₂O₃@SiO₂

Fig. S3: VSM diagram of γ -Fe₂O₃@SiO2 and 6-APA/ γ -Fe₂O₃@SiO₂

Fig. S4: FT-IR spectra of (a) γ -Fe₂O₃@SiO₂-NH₂, (b) 6-APA/ γ -Fe₂O₃@SiO₂, and (c) 6-APA

Table S2. Study of multicomponent reaction of 1,4-dihydropyrano[2,3-c] pyrazole derivatives

5	4-MeO-Ph-	OMe N N Ph	30	86	172–1741
6	4-Me-Ph-	Me CN N Ph	25	88	177–1791
7	4-Br-Ph-	Br CN N O NH ₂	10	95	176-1793
8	3-NO2-Ph-	NO_2 N N O NH_2 Ph	20	91	187–1901
9	2,6-Cl-Ph-	CI CI CI CI CN CN N O NH ₂ Ph	15	92	180–1841
10	4-F-Ph-	F CN N O NH ₂	15	94	166–1681

11	2-Cl-Ph-		15	92	144-1472
		Ph			

a Reaction conditions: aldehyde (2 mmol), 3-methyl-1-phenyl-1H-pyrazol-5(4H) -one (2 mmol), malononitrile (2 mmol), catalyst (30 mg), H2O (4 ml), during 30 min at room temperature

b Isolated yield

Table S3: Comparison of 6-APA/ γ -Fe2O3@SiO2with other catalysts reported in the literature for the synthesis of 1,4-dihydropyrano [2,3-c] pyrazole

Entry	Catalyst	Conditions	Time (min)	Yield (%)	Ref
1	OPC-SO3H (0.02gr)0	EtOH at 80°C	2	91	4
2	Fe3O4@THAM-SO3H (0.01gr)	EtOH-H2O(1:1), reflux	10	80	5
3	NB- Fe3O4@SiO2@CPTMO@DEA-SO3H	EtOH-H2O(2:1), reflux	40	93	6
4	Fe3O4@GO-N-(pyridin-4-amine) (0.01gr)	H2O, reflux	30	94	8
5	6-APA/γ-Fe2O3@SiO2 (0.03gr)	H2O, rt	20	90	Present work

Analytical data for selected compound:

6-Amino-4-(2,6-dichlorophenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c] pyrazole

White powder. Melting point = $180-184^{\circ}$ C. Yield: 92%.

¹ H NMR (300 MHz, DMSO-d6): δ = 1.793 (s, 3H, CH3), 5.678 (s, 1H, 4-H), 7.314–7.782 (m, 7H, ArH), 7.807-7811 (d, 2H, ArH).

IR (KBr) vmax: 3456, 3321, 2198, 1660, 1591, 1392, 1269, 1126, 1049, 758 cm⁻¹.

References

- 1. S. R. Mandha, S. Siliveri, M. Alla, V. R. Bommena, M. R. Bommineni and S. Balasubramanian, *Bioorganic & medicinal chemistry letters*, 2012, **22**, 5272-5278.
- T. S. Jin, A. Q. Wang, Z. L. Cheng, J. S. Zhang and T. S. Li, *Synthetic communications*, 2005, **35**, 137-143.
- 3. S. B. Guo, S. X. Wang and J. T. Li, *Synthetic Communications*, 2007, **37**, 2111-2120.
- 4. N. Nagasundaram, M. Kokila, P. Sivaguru, R. Santhosh and A. Lalitha, *Advanced Powder Technology*, 2020.
- 5. H. Faroughi Niya, N. Hazeri and M. T. Maghsoodlou, *Applied Organometallic Chemistry*, 2020, **34**, e5472.
- 6. B. Eftekhari far and M. Nasr-Esfahani, *Applied Organometallic Chemistry*, 2020, **34**, e5406.
- 7. H. Ghafuri, M. Kazemnezhad Leili and H. R. Esmaili Zand, *Applied Organometallic Chemistry*, 2020, e5757.
- 8. D. Azarifar and M. Khaleghi-Abbasabadi, *Research on Chemical Intermediates*, 2019, **45**, 199-222.