Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supporting Information (ESI)

Visible light promoted tandem dehydrogenation-deaminative

cyclocondensation under aerobic condition for the synthesis of 2-aryl

benzimidazoles/quinoxalines from ortho-phenylenediamines and

arylmethyl/ethyl amines

Firdoos Ahmad Sofi,^a Rohit Sharma,^{a,b} Ravi Rawat,^a Asit K. Chakraborti^{a,c}*and Prasad V. Bharatam^{a,*}

^aDepartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Punjba-160062, India

^bPresent address: Department of Forest Product, College of Forestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, India

^cPresent address: Department of Chemistry, Indian Institute of Technology-Ropar, Rupnagar, Punjab- 140001, India

*Corresponding authors' e mails: <u>pvbharatam@niper.ac.in</u> (P V Bharatam); <u>akchakraborti@niper.ac.in</u>, <u>chakrabortiak@iitrpr.ac.in</u> (A K Chakraborti).

TABLE OF CONTENTS

Section	Contents
1.	Experimental procedures and spectral data
2.	Scanned ¹ H, ¹³ C NMR and HRMS spectra
3.	References associated with ESI

SECTION 1. EXPERIMENTAL PROCEDURES AND SPECTRAL DATA

Experimental Procedures:

S1.1. General. The chemicals required for the study were obtained from Sigma-Aldrich Company and were used as such without further purification unless otherwise mentioned. Thin Layer Chromatography (TLC) performed on silica gel aluminium plates monitored the progress of the reaction and visualization was done by UV chamber. ¹H NMR and ¹³C NMR spectra were recorded at 400 MHz and 100 MHz instrument respectively, with TMS as an internal standard. Chemical data for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to the residual proton in the NMR solvent (CDCl₃, 7.26 ppm; CD₃OD, 3.31 ppm; DMSO-*d*₆ 2.51 ppm). Chemical data for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent (CDCl₃, 77.16 ppm; CD₃OD, 49.0; DMSO-*d*₆ 39.51 ppm). Coupling constants (*J*) were reported in hertz (Hz). The abbreviations used to characterize the signals are as follows: s = singlet, m = multiplet, d = doublet, br. s. = broad singlet, dd = doublet of doublet, t = triplet. ESI-MS spectra were recorded on Agilent 1100 LC-Q-TOF. IR spectra were recorded on Perkin-Elmer IR spectrophotometer.

Typical procedure for the synthesis of 2-phenyl-1*H***-benzo**[*d*]**imidazole**: To the magnetically stirred mixture of the *o*-phenylenediamine **1a** (108.1 mg, 1 mmol) and benzylamine **2a** (128.5 mg, 1.2 mmol, 131.07 μ L) in DMSO (4 mL) was added aq. HCl (0.864 mg, 0.24 mmol, 24 mol%: 20 μ L of aq. 12 N HCl) and the mixture was irradiated with visible light (White CFL, 32 W) for 30 h. After completion of the reaction (TLC), the mixture was diluted with water (5 mL) and extracted with EtOAc (3 × 5 mL). The combined EtOAcextracts were dried (anh Na₂SO₄), filtered, the filtrate concentarted under rotary vacuum evaporation, and the residue was charged on to chromatography (100-200 mesh silica gel) column and eluted with 12% EtOAc-hexaneto afford pure **3a** (151.4 mg, 78%). All the remaining reactions were performed on 1 mmol scale following this general procedure and. The spectral data of the synthesised compounds are provided below.

Experimental procedure for the synthesis of 2-aryl quinoxalines: To the magnetically stirred mixture of the *o*-phenylenediamine **1a** (108.1 mg, 1 mmol) and phenethylamine **4a** (145.4 mg, 150.8 μ L, 1.2 mmol) in DMSO (4 mL) was added HCl (0.864 mg, 0.24 mmol, 24 mol%: 20 μ L of aq. 12 N HCl) and irradiated under visible light (White CFL, 32 W) for 30 h. After completion of

the reaction (TLC), the mixture was diluted with water (5 mL) and extracted with EtOAc (3×5 mL). The combined EtOAc extracts were dried (anh Na₂SO₄), filtered, the filtrate was concentarted under rotary vacuum evaporation, the residue was charged on to chromatography (100-200 mesh silica gel) column and eluted with 10% EtOAc-hexane to afford pure **5a** (154.6 mg, 75%). All the remaining reactions were performed following this general procedure and on 1 mmol scale. The spectral data of the synthesised compounds are provided below.

Separation of the regioisomeric mixtures of 5m & 5m¹ and of 5n & 5n¹ by column chromatography: The separation of regioisomeric products was achieved by adsorbing the crude reaction mixture on silica gel (60-120 mesh size) and charged on the column chromatography of silica gel (230-400 mesh size) and eluting with hexane-EtOAc (98:2) to obtain the pure regioisomers. In case of separation of the regioisomeric mixture of 5m and 5m¹, the compound 5m eluted first (67 mg, 30% yield) followed by the compound 5m¹ (89 mg, 40% yield). In case of separation of the regioisomeric mixture of 5n and 5n¹, the compound 5n eluted first (60 mg, 25% yield) followed by the compound 5n¹ (103 mg, 43% yield).

Spectral Data:

(Note: In general, in a ¹H NMR spectrum recorded in CDCl₃, a peak at around δ 1.6 refers to moisture in the solvent/sample and a peak at δ 1.2 refers to oil/grease present in the sample. Similarly, in ¹H NMR spectrum recorded in DMSO, a peak at around δ 3.3 refers to moisture in the solvent/sample.

2-Phenyl-1*H*-benzo[*d*]imidazole (3a)¹

White solid; 151.4 mg, 78%, m.p 294-297 °C (295-298 °C)²; ¹H NMR (400 MHz, DMSO- d_6) δ 12.93 [s, 1H (NH)], 8.21 (d, J = 8 Hz, 2H), 7.69 (d, J = 8 Hz, 1H), 7.58-7.48 (m, 4H), 7.23 (t, J = 8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 144.3, 135.5, 130.6, 130.3, 129.4, 126.9, 122.9, 122.1, 119.3, 111.8; IR (CHCl₃): v_{max} 2955.1, 2920.8, 2870.4, 1713.2, 1458.4, 1377.9, 1275, 1260.7, 1187.8, 1081.5, 1019 cm⁻¹; ESI-MS (m/z): 195.20 [M+H]⁺.

2-(4-Methylphenyl)-1*H*-benzo[d]imidazole (3b)²

Off white solid; 145.7 mg, 70%, m.p 266-268 °C (267-269 °C)²; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.82 [s, 1H (NH)], 8.08 (d, *J* = 8 Hz, 2H), 7.65-7.51 (m, 2H), 7.37 (d, *J* = 8 Hz, 2H), 7.22-7.17 (m, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 144.3, 140, 135.4, 129.9, 129.4, 127.9, 126.8, 122.8, 122, 119.2, 111.6, 21.4; IR (CHCl₃): v_{max}3405.9, 2924.7, 2255, 1657.4, 1457.1, 1378.3, 1275.6, 1260.9, 1023.5, 999.1 cm⁻¹; ESI-MS (*m*/*z*): 209.06 [M+H]⁺.

5,6-Dichloro-2-phenyl-1*H*-benzo[*d*]imidazole (3i)¹

White solid; 188.6 mg, 72%, m.p 225-227 °C (226-227 °C)⁵; ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.3 [s, 1H (NH)], 8.19 (d, *J* = 8 Hz, 2H), 7.95 (s, 1H), 7.91 (d, *J* = 8 Hz, 1H), 7.77 (s, 1H), 7.59-7.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 143.8, 135.3, 131, 129.7, 128.7, 127.7, 127.1, 120.2, 113.4; IR (CHCl₃): v_{max} 2954.9, 2922.9, 2854.2, 1711.9, 1457.5, 1378, 1275.5, 1260.8, 1189, 1081.4, 1027.9 cm⁻¹; ESI-MS (*m*/*z*): 340.99 [M+H]⁺.

5,6-Dimethyl-2-phenyl-1*H*-benzo[*d*]imidazole (3j)³

Me H Me N

White solid; 151.0 mg, 68%, m.p 245-248 °C (246-248 °C)⁵; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.65 [s, 1H (NH)], 8.16 (d, *J* = 8 Hz, 2H), 7.55 (t, *J* = 8Hz, 2H), 7.48 (t, *J* = 8 Hz, 2H), 7.30 (s, 1H), 2.34 (s, 3H), 2.32 (s, 3H); ¹³ C NMR (100 MHz, DMSO-*d*₆) δ 150.8, 142.9, 133.9, 131.6, 130.4, 130.8, 129.9, 129.3, 126.6, 119.4, 111.8, 20.5 IR (CHCl₃): v_{max} 3434.9, 2251.8, 2125.6, 1770.3, 1658.4, 1451, 1376.3, 1240.2, 1031 cm⁻¹; ESI-MS (*m*/*z*): 223.11 [M+H]⁺.

5-Nitro-2-phenyl-1*H*-benzo[*d*]imidazole (3g)³

White solid; 181.7 mg, 76%, m.p 207-209 °C (208-209 °C)⁵; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.44 (s, 1H), 8.21 (d, *J* = 8Hz, 2H), 8.11 (d, *J* = 8 Hz, 1H), 7.74 (d, *J* = 8 Hz, 1H), 7.59-7.57 (m, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 156.2, 144.3, 143.1, 139.5, 137.4, 131.4, 129.6, 127.4, 118.4, 116.3, 111.5; IR (CHCl₃): v_{max}3428.9, 2253.2, 2126.4, 1658.6, 1275.8, 1260.9, 1051.2, 1023.4, 1003.6 cm⁻¹; ESI-MS (*m*/*z*): 240.06 [M+H]⁺.

5-Chloro-6-nitro-2-phenyl-1*H*-benzo[*d*]imidazole (3k)

Off white low melting solid; 188.4 mg, 69%; ¹H NMR (400 MHz, DMSO-d₆) δ 8.34 (s, 1H), 8.21 (d, *J* = 8Hz, 2H), 7.88 (s, 1H), 7.60-7.58 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 143.1, 142.3, 138.2, 131.5, 129.6, 129.2, 127.5, 119.2, 117.1, 113.9; IR (CHCl₃): ν_{max} 3440.1, 3049.4, 2299.9, 1646.5, 1275.1, 1052.7, 1026.3, 1007.4 cm⁻¹; ESI-MS (*m*/*z*)): 274.03 [M+H]⁺; HRMS (ESI-TOF) m/*z*: [M+H]⁺ calcd for C₁₃H₉ClN₃O₂ 274.0378; Found 274.0375.

2-(3-Chlorophenyl)-1*H*-benzo[*d*]imidazole (3c)²

White solid; 175.6 mg, 77%, m.p 239-241 °C (238-240 °C)²; ¹H NMR (400 MHz, DMSO-d₆) δ 13.07 (s, 1H), 8.24 (s, 1H), 8.16 (d, *J* = 4Hz, 1H), 7.70 (d, *J* = 4Hz, 1H), 7.61-7.55 (m, 3H), 7.26 (t, *J* = 8Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150, 143.9, 135.5, 134.6, 132.7, 131.4, 129.9, 126.8, 125.6, 123.4, 122.8, 119.6, 111.9; IR (CHCl₃): v_{max}3434.9, 2252.6, 2126.3, 1658.2, 1441.4, 1275.9, 1027.1 cm⁻¹; ESI-MS (*m*/*z*): 229.04 [M+H]⁺.

2-(3-Chlorophenyl)-5-nitro-1*H*-benzo[*d*]imidazole (3h)⁴

Off white solid; 218 mg, 80%; ¹H NMR (400 MHz, DMSO- d_6) δ 8.50 (s, 1H), 8.25 (s, 1H), 8.19-8.14 (m, 2H), 7.80 (d, J = 8Hz, 1H), 7.65-7.64 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 154.5, 142.8, 138.2, 133.9, 131.1, 131, 126.5, 125.9; IR (CHCl₃): v_{max} 3434.9, 2253, 2126.7, 1658.6, 1344.8, 1241.1, 1027, 1007 cm⁻¹; ESI-MS (m/z): 273.98 [M+H]⁺.

2-(2-Methylphenyl)-1*H*-benzo[*d*]imidazole (3d)⁵

Off white solid; 145.6 mg, 70%; ¹H NMR (400 MHz, DMSO- d_6) δ 7.76 (d, J = 4Hz, 1H), 7.63-7.61 (m, 2H), 7.43-7.35 (m, 3H), 7.24-7.20 (m, 2H), 2.62 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 152.4, 137.5, 131.7, 130.5, 129.9, 129.8, 126.4, 122.4, 21.5; IR (CHCl₃): v_{max} 2923.4, 2853.9, 1733.9, 1457.1, 1378.2, 1260.3, 1025.2 cm⁻¹; ESI-MS (m/z): 208.95 [M+H]⁺.

2-(2,4-Dimethoxyphenyl)-1*H*-benzo[*d*]imidazole (3e)⁶

Off white solid; 157.5 mg, 62%; ¹H NMR (400 MHz, DMSO- d_6) δ 8.27 (d, J = 8Hz, 1H), 7.60-7.57 (m, 2H), 7.17-7.15 (m, 2H), 6.77-6.71 (m, 2H), 4.03 (s, 3H), 3.86 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 158.5, 149.6, 131.3, 121.9, 111.4, 106.7, 99, 56.3, 55.9; IR (CHCl₃): v_{max} 3420.2, 3051.9, 1646.6, 1275.1, 1050.2, 1024.4, 1004.5 cm⁻¹; ESI-MS: 255.15 [M+H]⁺.

2-(4-tert-Butylphenyl)-1H-benzo[d]imidazole (3f)⁵

Off white solid; 180 mg, 72%; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.87 (s, 1H), 8.13 (d, *J* = 8Hz, 2H), 7.67 (d, *J* = 8Hz, 1H), 7.58 (d, *J* = 8Hz, 2H), 7.54 (d, *J* = 8Hz, 1H), 7.23 (t, *J* = 8Hz, 2H), 1.33 (s, 9H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 153, 1517, 144.1, 135.3, 127.9, 126.7, 126.2, 122.8, 122.1, 119.2, 111.7, 35, 31.5; IR (CHCl₃): v_{max} 3399, 1675.4, 1275.6, 1023.1, 996.4 cm⁻¹; ESI-MS (*m*/*z*): 251.67 [M+H]⁺

6-Bromo-4-chloro-2-phenyl-1*H*-benzo[*d*]imidazole (3l)

Off white solid; 214 mg, 70%; ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.40 (s, 1H), 8.29-8.19 (m, 2H), 7.68 (s, 1H), 7.57 (t, *J* = 8Hz, 3H), 7.46)s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 153.4, 140.6, 137.4, 131, 129.6, 129.5, 127.3, 124.4, 124.2, 114.6, 113.7; ESI-MS (*m*/*z*): 306.95 [M+H]⁺.

2-Phenylquinoxaline (5a)⁷

Off white solid; 154.6 mg, 75%, m.p 72-72 ⁰C; ¹H NMR (400 MHz, CDCl₃): δ 9.35 (s, 1H), 8.23-8.13 (m, 4H), 7.82-7.74 (m, 2H), 7.60-7.52 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.8, 143.4, 142.3, 141.6, 136.8, 130.3, 130.2, 129.6, 129.5, 129.1, 127.6 cm⁻¹; ESI-MS (*m*/*z*): 207 [M+H]⁺HRMS (ESI-TOF) m/*z*: [M+ H]⁺calcd for C₁₄H₁₁N₂ 207.0917; Found 207.0923.

2-(4-Bromophenyl)quinoxaline (5b)⁷

Light brown solid; 215.8 mg, 76%; m.p 138-140°C (138 °C)¹⁰; ¹H NMR (400 MHz, MeOD): δ 9.42 (s, 1H), 8.24 (d, *J* = 8 Hz, 2H), 8.17 (d, *J* = 8 Hz, 2H), 8.13 (d, *J* = 8 Hz, 2H), 7.90-7.83 (m, 2H), 7.78 (d, *J* = 12 Hz, 2H); ¹³CNMR (100 MHz, MeOD): δ 150.8, 142.8, 142, 141.2, 135.5, 132, 130.5, 129.9, 129.1, 128.9, 128.3, 124.6 cm⁻¹; ESI-MS (*m*/*z*): 285 [M+2H]⁺; HRMS (ESI-TOF) m/z: [M+ H]⁺calcd for C₁₄H₁₀BrN₂ 285.0022; Found 285.0026.

2-(4-Methoxyphenyl)quinoxaline (5c)⁷

Off white solid; 153.5 mg, 65%; m.p 96-98 °C (97-98 °C)¹⁰; ¹H NMR (400 MHz, MeOD): δ 9.33 (s, 1H), 8.22 (d, *J* = 8Hz, 2H), 8.10-8.04 (m, 2H), 7.82-7.76 (m, 2H), 7.12 (d, *J* = 2H), 3.90 (s, 3H); ¹³C NMR (100 MHz, MeOD): δ 161.9, 151.7, 142.8, 142.1, 140.5, 130.3, 129.1, 128.8, 128.7, 128.1, 114.2, 54.5; ESI-MS (*m*/*z*): 237 [M+H]⁺.

2-(4-Fluorophenyl)quinoxaline (5d)⁸

Off white solid; 172.5 mg, 77%, m.p 128-131; ¹H NMR (400 MHz, CDCl₃): δ 9.28 (s, 1H), 8.21-8.18 (m, 2H), 8.14-8.11 (m, 2H), 7.79-7.74 (m, 2H), 7.27-7.23 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 165.5 (J_{CF1} = 249 Hz), 150.7, 142.9, 142.2, 141.5, 132.9 (${}^{4}J_{CF}$ = 3Hz), 130.4, 129.6, 129.5, 129.4, 129.1, 116.3 (${}^{2}J_{CF}$ = 21 Hz); ESI-MS (m/z): 225 [M+H]⁺.

6-Nitro-2-phenylquinoxaline (5e)⁹

Off white solid; 163.2 mg, 65%, m.p 199-202; ¹H NMR (400 MHz, CDCl₃): δ 9.53 (s, 1H), 9.06 (s, 1H), 8.60 (d, *J* = 1H), 8.33-8.28 (m, 3H), 7.65-7.63 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.5, 140.1, 131.1, 129.4, 127.9, 125.6, 123.8; ESI-MS (*m*/*z*): 252 [M+H]⁺.

6,7-Dichloro-2-phenylquinoxaline (5f)⁸

White solid; 186 mg, 68%, m.p 158-161; ¹H NMR (400 MHz, CDCl₃): δ 9.34 (s, 1H), 8.30 (s, 1H), 8.26 (s, 1H), 8.22 (d, *J* = 8 Hz, 2H), 7.61-7.59 (m, 3H); ¹³CNMR (100 MHz, CDCl₃): δ 152.6, 144.3, 141.1, 140.3, 136, 134.9, 134, 130.8, 130.2, 129.8, 129.3, 127.6; ESI-MS (*m*/*z*): 275 [M+H]⁺; HRMS (ESI-TOF) m/z: [M+H]⁺calcd for C₁₄H₉Cl₂N₂ 275.0137; Found 275.0144.

6,7-Dichloro-2-(4-methoxyphenyl)quinoxaline (5g)

Off white solid; 185 mg, 61%, m.p 203-205; ¹H NMR (400 MHz, CDCl₃): δ 9.29 (s, 1H), 8.24-8.17 (m, 4H), 7.11-7.09 (m, 2H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.9, 152.2, 143.9, 141.1, 139.6, 134.7, 133.3, 129.9, 129.7, 129.1, 128.4, 114.7, 55.5; ESI-MS (*m/z*): 305 [M+H]⁺.

6,7-Dichloro-2-(4-fluorophenyl)quinoxaline (5h)

CI CI

Off white solid; 207 mg, 71%, ¹H NMR (400 MHz, CDCl₃): δ 9.31 (s, 1H), 8.28 (d, *J* = 12 Hz, 1H), 8.24-8.19 (m, 2H), 7.31-7.25 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.8 (*J*_{CF1} = 249 Hz), 151.5, 143.8, 140.9, 140.2, 135.1, 134.1, 132.1, 130.1, 129.8, 129.7, 116.5 (*J*_{CF2} = 22 Hz); ESI-MS (*m*/*z*): 292 [M+H]⁺; HRMS (ESI-TOF) m/z: [M+H]⁺calcd for C₁₄H₈Cl₂FN₂ 293.0043; Found 293.0035.

6,7-Dimethyl-2-phenylquinoxaline (5i)⁸

Off white solid; 170.9 mg, 73%; ¹H NMR (400 MHz, CDCl₃): δ 9.47 (s, 1H), 8.32-8.30 (m, 2H), 7.92 (s, 1H), 7.89 (s, 1H), 7.62-7.56 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): 150.5, 143.1, 141.4, 140.8, 140.7, 136.8, 130.6, 129.6, 128.6, 128.2, 127.7, 20.3; ESI-MS (*m/z*): 235 [M+H]⁺.

2-(4-Fluorophenyl)-6,7-dimethylquinoxaline (5j)¹⁰

Off white solid; 191.6 mg, 76%; ¹H NMR (400 MHz, CDCl₃): δ 9.17 (s, 1H), 8.18-8.14 (m, 2H), 7.86 (d, *J* = 8Hz, 2H), 7.25 (t, *J* = 8Hz, 2H), 2.50 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 165.25 (*J*_{CF1} = 248 Hz), 149.8, 141.9, 141.1, 140.9, 140.2, 129.3, 129.2, 128.5, 128.1, 116.2 (*J*_{CF2} = 21 Hz), 20.4, 20.3; ESI-MS (*m*/*z*): 253 [M+H]⁺. HRMS (ESI-TOF) m/z: [M+H]⁺calcd for C₁₆H₁₄FN₂ 253.1136; Found 253.1146.

2-(4-Chlorophenyl)-6,7-dimethylquinoxaline (5k)¹⁰

Off white solid; 195.6 mg, 73%, ¹H NMR (400 MHz, CDCl₃): δ 9.19 (s, 1H), 8.14 (d, J = 8 Hz, 2H), 7.89 (d, J = 12 Hz, 2H), 7.54 (d, J = 2H), 2.53 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 149.7, 141.9, 141.1, 140.6, 140.5, 135.5, 129.3, 128.6, 128.1, 20.4, 20.3; ESI-MS (m/z): 269 [M+H]⁺; HRMS (ESI-TOF) m/z: [M+ H]⁺calcd for C₁₆H₁₄ClN₂ 269.0840; Found 269.0838.

2-(4-Methoxyphenyl)-6,7-dimethylquinoxaline (51)⁸

Off white solid; 163.7 mg, 62%; ¹H NMR (400 MHz, CDCl₃): δ 9.19 (s, 1H), 8.16 (d, *J* = 8 Hz, 2H), 7.88 (s, 1H), 7.84 (s, 1H), 7.12 (d, *J* = 8 Hz, 2H), 3.91 (s, 3H), 2.51 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 150.7, 142.1, 140.7, 140.1, 139.6, 129.6, 128.8, 128.5, 128.1, 114.5, 55.4, 20.4, 20.3; ESI-MS (*m*/*z*): 265 [M+H]⁺.

6-Fluoro-2-phenylquinoxaline (5m)⁸

Off white solid; 67 mg, 30%; ¹H NMR (400 MHz, CDCl₃): δ 9.35 (s, 1H), 8.22-8.17 (m, 2H), 7.79 (d, *J* = 8Hz, 1H), 7.63-7.56 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 163.76 (*J*_{CF1} = 250 Hz), 151.4, 144.1, 142.1, 139.5, 131.7, 130.3, 129.2, 122.4, 120.8, 120.6, 112.8 (*J*_{CF2} = 22 Hz); ESI-MS (*m*/*z*): 225 [M+H]⁺HRMS (ESI-TOF) m/z: [M+ H]⁺ calcd for C₁₄H₁₀FN₂ 225.0823; Found 225.0829.

7-Fluoro-2-phenylquinoxaline (5m¹)⁸

Off white solid; 89 mg, 40%; ¹H NMR (400 MHz, CDCl₃): δ 9.27 (s, 1H), 8.18 (d,*J* =8Hz, 2H), 8.11 (dd, *J* = 4, 8 Hz, 1H), 7.76-7.74 (m, 1H); 7.57-7.48 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 164.1 (*J*_{CF1} = 201 Hz), 152.6, 144.1, 143.3, 142.7 (*J*_{CF4}=3 Hz), 138.9, 136.5, 131.3 (*J*_{CF3} = 8 Hz), 130.6, 129.3, 127.7, 120.1, 113.2 ESI-MS (*m*/*z*): 225 [M+H]⁺.

6-Chloro-2-phenylquinoxaline (5n)⁷

Off white solid; 60 mg, 25%, ¹H NMR (400 MHz, CDCl₃): δ 9.36 (s, 1H), 8.23-8.21 (m, 2H), 8.15 (m, 2H), 7.77 (dd, *J* = 4, 8 Hz, 1H), 7.63-7.56 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.9, 144.2, 141.8, 140.8, 136.3, 135.2, 131.3, 130.8, 130.4, 129.4, 128.0, 127.5, ESI-MS (*m*/*z*): 241 [M+H]⁺; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₄H₁₀ClN₂ 241.0527; Found 241.0538.

7-Chloro-2-phenylquinoxaline (5n¹)⁷

Off white solid; 103 mg, 43%; m.p 104-106 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.33 (s, 1H), 8.22-8.20 (m, 2H), 8.18 (d, *J* = 4 Hz, 1H), 8.08 (d, *J* = 8 Hz, 1H), 7.72 (dd, *J* = 4, 8 Hz, 1H), 7.62-7.55 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.6, 143.4, 142.7, 140.0, 136.3, 136.1, 130.6, 130.5, 130.3, 129.2, 128.5, 127.6; ESI-MS (*m*/*z*): 241 [M+H]⁺.

2-(4-Chlorophenyl)quinoxaline (50)⁷

Off white solid; 180 mg, 75%; ¹H NMR (400 MHz, CDCl₃): δ 9.30 (s, 1H), 8.17-8.12 (m, 4H), 7.83-7.75 (m, 2H), 7.56 (d, *J* = 12 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 149.5, 141.8, 141.1, 140.6, 135.5, 134.1, 129.4, 128.7, 128.5, 128.3, 128.1, 127.7; ESI-MS (*m*/*z*): 241 [M+H]⁺; HRMS (ESI-TOF) m/*z*: [M+ H]⁺calcd for C₁₄H₁₀ClN₂ 241.0527; Found 241.0536.

5,7-Dimethyl-2-phenylquinoxaline (5p)

Off white solid; 75 mg, 32%; ¹H NMR (400 MHz, CDCl₃): δ 9.28 (s, 1H), 8.21 (d, *J* = 8 Hz, 2H), 7.79 (s, 1H), 7.60-7.51 (m, 3H), 7.44 (s, 1H), 2.81 (s, 3H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 151.3, 142.6, 141.1, 140.4, 139.3, 137.1, 136.7, 132, 129.9, 129.1, 127.5, 126.4, 21.9, 17.2; ESI-MS (*m*/*z*): 235 [M+H]⁺; HRMS (ESI-TOF) m/*z*: [M+ H]⁺ calcd for C₁₆H₁₅N₂ 235.1230; Found 235.1236.

6,8-Dimethyl-2-phenylquinoxaline (5p¹)

Off white solid; 82 mg, 35%; ¹H NMR (400 MHz, CDCl₃): δ 9.29 (s, 1H), 8.27 (d, *J* = 8 Hz, 2H), 7.73 (s, 1H), 7.59-7.49 (m, 3H), 7.46 (s, 1H), 2.85 (s, 3H), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 149.4, 142.5, 141.8, 139.8, 139.7, 137.3, 137.2, 132.5, 129.8, 129.0, 127.3, 125.7, 21.9, 16.9; ESI-MS (*m*/*z*): 235 [M+H]⁺.

Section 2. Scanned ¹H NMR, ¹³C NMR, and HRMS Spectra

¹H NMR of 2-phenyl-1H-benzo[d]imidazole (3a)

Expansion of aromatic region of ¹H NMR of 2-phenyl-1H-benzo[d]imidazole (3a)

NMR 6 % \$2002 \$861 89 %		Parameter	Value
C13CPD DMSO {D:\CIL\P.V.ipharatam_10ชุ๊(ฟัญีที่)ผู้ปีมี/ผู้ผู้อ} Ağministrator 12	1	Data File Name	C:/Users/Del/ Desktop/ Bezimidazole/ Spec_Data/ RV_RS_001/ NMR/ 11/ fid
	2	Title	NMR
	3	Comment	rv-rs-001 C13CPD DMSO {D:\CIL\ P.V.Bharatam_1 08\NMR\ 2017\Aug} Administrator 12
	4	Origin	Bruker BioSpin GmbH
	5	Owner	Administrator
	6	Site	
ц – – – – – – – – – – – – – – – – – – –	7	Spectrometer	spect
	8	Author	
	9	Solvent	DMSO
	10	Temperature	673.2
N N	11	Pulse Sequence	zgpg30
	12	Number of Scans	256
	13	Receiver Gain	203
	14	Relaxation Delay	2.0000
	15	Pulse Width	9.5000
	16	Acquisition Time	1.3631
	17	Acquisition Date	2017-08-22T18 :47:31
	18	Modification Date	2017-08-22T18 :47:32
	19	Spectrometer Frequency	100.62
	20	Spectral Width	24038.5
	21	Lowest Frequency	-1958.4
	22	Nucleus	13C
180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0	23	Acquired Size	32768
ri (ppm)	24	Spectral Size	65536

¹³C NMR of 2-phenyl-1H-benzo[d]imidazole (3a)

¹H NMR of 2-(4-methylphenyl)-1H-benzo[d]imidazole (3b)

Expansion of aromatic region of ¹H NMR of 2-(4-methylphenyl)-1H-benzo[d]imidazole (3b)

¹³C NMR of 2-(4-methylphenyl)-1H-benzo[d]imidazole (3b)

Expansion of the aromatic region of the ¹H NMR of 5,6-dichloro-2-phenyl-1Hbenzo[d]imidazole (3i)

¹³C NMR of 5,6-dichloro-2-phenyl-1H-benzo[d]imidazole (3i)

¹H NMR of 5,6-dimethyl-2-phenyl-1H-benzo[d]imidazole (3j)

Expansion of the aromatic region of the ¹H NMR of 5, 6-dimethyl-2-phenyl-1Hbenzo[d]imidazole (3j)

¹³C NMR of 5,6-dimethyl-2-phenyl-1H-benzo[d]imidazole (3j)

¹H NMR of 5-nitro-2-phenyl-1H-benzo[d]imidazole (3g)

Expansion of the aromatic region of the ¹H NMR of 5-nitro-2-phenyl-1H-benzo[d]imidazole (3g)

¹³C NMR of 5-nitro-2-phenyl-1H-benzo[d]imidazole (3g)

¹H NMR spectra of 5-chloro-6-nitro-2-phenyl-1H-benzo[d]imidazole (3k)

HRMS of 5-chloro-6-nitro-2-phenyl-1H-benzo[d]imidazole (3k)

Expansion of the aromatic region of the ¹H NMR of 2-(3-chlorophenyl)-1Hbenzo[d]imidazole (3c)

¹³C NMR of 2-(3-chlorophenyl)-1H-benzo[d]imidazole (3c)

¹H NMR of 2-(3-chlorophenyl)-5-nitro-1H-benzo[d]imidazole (3h)

Expansion of the aromatic region of the ¹H NMR of 2-(3-chlorophenyl)-5-nitro-1Hbenzo[d]imidazole (3h)

¹³C NMR of 2-(3-chlorophenyl)-5-nitro-1H-benzo[d]imidazole (3h)

¹H NMR of 2-(2-methylphenyl)-1H-benzo[d]imidazole (3d)

Expansion of the aromatic region of the ¹H NMR of 2-(2-methylphenyl)-1Hbenzo[d]imidazole (3d)

¹³C NMR of 2-(2-methylphenyl)-1H-benzo[d]imidazole (3d)

¹H NMR of 2-(2,4-dimethoxyphenyl)-1H-benzo[d]imidazole (3e)

Expansion of the aromatic region of the ¹H NMR of 2-(2,4-dimethoxyphenyl)-1Hbenzo[*d*]imidazole (3e)

¹³C NMR of 2-(2,4-dimethoxyphenyl)-1*H*-benzo[*d*]imidazole (3e)

¹H NMR of 2-(4-(tert-butyl)phenyl)-1H-benzo[d]imidazole (3f)

Expansion of the aromatic region of the ¹H NMR of 2-(4-(*tert*-butyl)phenyl)-1Hbenzo[d]imidazole (3f)

¹³C NMR of 2-(4-(*tert*-butyl)phenyl)-1*H*-benzo[*d*]imidazole (3f)

Expansion of the aromatic region of the ¹H NMR of 6-bromo-4-chloro-2-phenyl-1Hbenzo[d]imidazole (3l)

¹³C NMR of 6-bromo-4-chloro-2-phenyl-1H-benzo[d]imidazole (3l)

¹H NMR of 2-Phenylquinoxaline (5a)

Expansion of the aromatic region of the ¹H NMR of 2-Phenylquinoxaline (5a)

¹³C NMR of 2-Phenylquinoxaline (5a)

¹H NMR of 2-(4-Bromophenyl)quinoxaline (5b)

Expansion of the aromatic region of the ¹H NMR of 2-(4-Bromophenyl)quinoxaline (5b)

¹³C NMR of 2-(4-Bromophenyl)quinoxaline (5b)

HRMS of 2-(4-Bromophenyl)quinoxaline (5b)

¹H NMR of 2-(4-methoxyphenyl)quinoxaline (5c)

Expansion of the aromatic region of the ¹H NMR of 2-(4-methoxyphenyl)quinoxaline (5c)

¹³C NMR of 2-(4-methoxyphenyl)quinoxaline (5c)

¹H NMR of 2-(4-fluorophenyl)quinoxaline (5d)

Expansion of the aromatic region of ¹H NMR of 2-(4-fluorophenyl)quinoxaline (5d)

¹³C NMR of 2-(4-fluorophenyl)quinoxaline (5d)

¹H NMR of 6-nitro-2-phenylquinoxaline (5e)

Expansion of the aromatic region of the ¹H NMR of 6-nitro-2-phenylquinoxaline (5e)

¹³C NMR of 6-nitro-2-phenylquinoxaline (5e)

¹H NMR of 6,7-dichloro-2-phenylquinoxaline (5f)

Expansion of the aromatic region of the ¹H NMR spectra of 6,7-dichloro-2-phenylquinoxaline (5f)

¹³C NMR of 6,7-dichloro-2-phenylquinoxaline (5f)

HRMS of 6,7-dichloro-2-phenylquinoxaline (5f)

¹H NMR of 6,7-dichloro-2-(4-methoxyphenyl)quinoxaline (5g)

Expansion of the aromatic region of the¹H NMR of 6,7-dichloro-2-(4-methoxyphenyl)quinoxaline (5g)

¹³C NMR of 6,7-dichloro-2-(4-methoxyphenyl)quinoxaline (5g)

Expansion of the aromatic region of the ¹H NMR of 6,7-dichloro-2-(4-fluorophenyl)quinoxaline (5h)

¹³C NMR of 6,7-dichloro-2-(4-fluorophenyl)quinoxaline (5h)

HRMS of 6,7-dichloro-2-(4-fluorophenyl)quinoxaline (5h)

¹H NMR of 6,7-dimethyl-2-phenylquinoxaline (5i)

Expansion of the aromatic region of the ¹H NMR of 6,7-dimethyl-2-phenylquinoxaline (5i)

¹³C NMR of 6,7-dimethyl-2-phenylquinoxaline (5i)

¹H NMR of 2-(4-fluorophenyl)-6,7-dimethylquinoxaline (5j)

Expansion of the aromatic region of the ¹H NMR of2-(4-fluorophenyl)-6,7dimethylquinoxaline (5j)

¹³C NMR of 2-(4-fluorophenyl)-6,7-dimethylquinoxaline (5j)

HRMS of 2-(4-fluorophenyl)-6,7-dimethylquinoxaline (5j)

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 52 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 11-30 H: 7-35 N: 0-5 F: 0-3 Sample Name : FS-10 IIT Test Name : HRMS-1 071119-FS-10 24 (0.245) AM2 (Ar,22000.0,0.00,0.00); Cm (24:27) IITRPR XEVO G2-XS QTOF 1: TOF MS ES+ 253.1146 100-

Page 1

6.21e+007

¹H NMR of 2-(4-chlorophenyl)-6,7-dimethylquinoxaline (5k)

Expansion of the aromatic region of the ¹H NMR spectra of 2-(4-chlorophenyl)-6,7dimethylquinoxaline (5k)

¹³C NMR of 2-(4-chlorophenyl)-6,7-dimethylquinoxaline (5k)

HRMS of 2-(4-chlorophenyl)-6,7-dimethylquinoxaline (5k)

¹H NMR of 2-(4-Methoxyphenyl)-6,7-dimethylquinoxaline (5l)

Expansion of the aromatic region of the ¹H NMR spectra of 2-(4-Methoxyphenyl)-6,7dimethylquinoxaline (5l)

¹³C NMR of 2-(4-Methoxyphenyl)-6,7-dimethylquinoxaline (5l)

¹H NMR of 6-fluoro-2-phenylquinoxaline (5m)

Expansion of the aromatic region of the ¹H NMR of 6-fluoro-2-phenylquinoxaline (5m)

¹³C NMR of 6-fluoro-2-phenylquinoxaline (5m)

HRMS of 6-fluoro-2-phenylquinoxaline (5m)

Expansion of the aromatic region of the ¹H NMR of 7-fluoro-2-phenylquinoxaline (5m¹)

¹³C NMR of 7-fluoro-2-phenylquinoxaline (5m¹)

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹H NMR of 6-Chloro-2-phenylquinoxaline (5n)

Expansion of the aromatic region of the ¹H NMR of 6-Chloro-2-phenylquinoxaline (5n)

¹³C NMR of 6-Chloro-2-phenylquinoxaline (5n)

HRMS of 6-Chloro-2-phenylquinoxaline (5n)

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 33 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 11-30 H: 7-35 N: 0-5 Cl: 0-2 Sample Name : FAS-OP1 IITRPR Test Name : HRMS-1 071119-FAS-OP1 16 (0.165) AM (Top,4, Ar,10000.0,0.00,0.00); Cm (16:19) XEVO G2-XS QTOF 1: TOF MS ES+ 3.19e+007 241.0538 100 % 243.0472 275.2758 313.2701 230.2463 487.2941 551.3260 392.2264 431.1782 599.4087 141.9589,158.0027 0-600 m/z 100 200 350 150 250 300 450 500 550 400 Minimum: -1.5 Maximum: 5.0 5.0 50.0 PPM DBE i-FIT Conf(%) Formula Calc. Mass mDa Norm Mass 241.0538 241.0533 0.5 2.1 10.5 1195.8 n/a n/a C14 H10 N2 C1

¹H NMR of 7-Chloro-2-phenylquinoxaline (5n¹)

Expansion of the aromatic region of the¹H NMR of 7-Chloro-2-phenylquinoxaline (5n¹)

¹³C NMR of 7-Chloro-2-phenylquinoxaline (5n¹)

Expansion of the aromatic region of the ¹H NMR of 2-(4-Chlorophenyl)quinoxaline (50)

¹³C NMR of 2-(4-Chlorophenyl)quinoxaline (50)

HRMS of 2-(4-Chlorophenyl)quinoxaline (50)

¹H NMR of 5,7-Dimethyl-2-phenylquinoxaline (5p)

Expansion of the aromatic region of the ¹H NMR of 5,7-Dimethyl-2-phenylquinoxaline (5p)

¹³C NMR of 5,7-Dimethyl-2-phenylquinoxaline (5p)

HRMS of 5,7-Dimethyl-2-phenylquinoxaline (5p)

¹H NMR of 6,8-Dimethyl-2-phenylquinoxaline (5p¹)

Expansion of the aromatic region of the ¹H NMR of 6,8-Dimethyl-2-phenylquinoxaline (5p1)

¹³C NMR of 6,8-Dimethyl-2-phenylquinoxaline (5p¹)

3. References associated with ESI

- 1. S. Park, J. Jung, E. J. Cho; Eur. J. Org. Chem, 2014, 2014, 4148-4154.
- 2. R. Sharma, M. Abdullaha, S. B. Bharate, Asian J. Org. Chem, 2017, 6, 1370–1374.
- 3. K. M. H. Nguyen, M. Largeron, Eur. J. Org. Chem; 2016, 1025–1032.
- 4. K. Osowska, O. Š. Miljanić, J. Am. Chem. Soc, 2011, 133, 4, 724-727.
- 5. R. Zhang, Y. Qin, L. Zhang, S. Luo, Org. Lett, 2017, 19, 5629–5632.
- B. Tanwar, P. Purohit, B.N. Raju, D. Kumar, D. N. Kommi, A. K. Chakraborti, *RSC Adv.*, 2015, 5, 11873-11883.
- 7. L. J. Martin, A. L. Marzinzik, S. V. Ley, I. R. Baxendale, Org. Lett. 2011, 13, 320-323.
- 8. J. Song, X. Li, Y. Chen, M. Zhao, Y. Dou, B. Chen, Synlett, 2012, 23, 2416-2420.
- 9. J. Pogula, S. Laha, P. R. Likhar, Catal. Lett. 2017, 147, 2724-2735.
- 10. C. Zhang, Z. Xu, L. Zhang, N. Jiao, Tetrahedron, 2012, 68, 5258-5262.