# Electronic Supporting Information (ESI)

# Tuning of uracil derivative for AIE based detection of pyrene at nano-molar level: Single crystal X-ray structure of the probe and DFT support

Mahuya Banerjee<sup>a</sup>, Milan Ghosh,<sup>a</sup> Sabyasachi Ta,<sup>a</sup> Subhasis Ghosh<sup>a</sup> and Debasis Das<sup>\*a</sup> Department of Chemistry, The University of Burdwan, Burdwan, 713104, West Bengal, India. Correspondence: <ddas100in@yahoo.com2>; phone, +91-342-2533913; fax, +91-342-2530452

### INDEX

- 1. Materials and equipment
- 2. General method of UV-Vis and fluorescence titration
- 3. Job's experiments using fluorescence method
- 4. Real sample analysis
- 5. Solid phase extraction of pyrene using silica immobilized probe L

Figure S1 QTOF-MS (ES<sup>+</sup>) spectrum of L in MeOH

Figure S2 <sup>1</sup>HNMR spectrum of L in DMSO-d<sub>6</sub>.

Figure S3 <sup>13</sup>CNMR spectrum of L in DMSO-d<sub>6</sub>.

Figure S4 FTIR spectrum of L.

Figure S5 (a) Absorption; (b) excitation and (c) emission spectra of L (DMSO/ H<sub>2</sub>O, 4/1, v/v, 20

μM, pH 7.4).

Figure S6 QTOF-MS (ES<sup>+</sup>) spectrum of L1 in MeOH.

Figure S7 <sup>1</sup>HNMR spectrum of L1 in DMSO-d<sub>6</sub>.

Figure S8 FTIR spectrum of L1.

**Figure S9** (a) Absorption; (b) excitation and (c) emission spectra of L1 (DMSO/  $H_2O$ , 4/1, v/v, 20  $\mu$ M, pH 7.4).

Figure S10 QTOF-MS (ES<sup>+</sup>) spectrum of L2 in MeOH.

Figure S11 <sup>1</sup>H NMR spectrum of L2 in DMSO-d<sub>6</sub>.

Figure S12 FTIR spectrum of L2.

Figure S13 (a) Absorption; (b) excitation and (c) emission spectra of L2 (in DMSO/  $H_2O$ , 4/1,

v/v, 20 µM, pH 7.4).

Figure S14 QTOF-MS (ES<sup>+</sup>) spectrum of L3 in DMSO-d<sub>6</sub>.

Figure S15<sup>1</sup>HNMR spectrum of L3 in DMSO-d<sub>6</sub>.

Figure S16 FTIR spectrum of L3.

Figure S17 (a) Absoption; (b) excitation and (c) emission spectra of L3 (DMSO/  $H_2O$ , 4/1, v/v, 20  $\mu$ M, pH 7.4).

Figure S18 Crystal packing diagram of L

Figure S19 Effect of pH on the emission intensities of free L and its pyrene adduct.

**Figure S20** Relative emission intensities of [L-pyrene] adduct (1:1, 20  $\mu$ M, red bar) in presence of other PAHs (20  $\mu$ M, black bar) in DMSO/H<sub>2</sub>O (4/1; v/v, pH 7.4) ( $\lambda_{Ex}$  = 336 nm).

**Figure S21** Iso-emissive point observed in the emission spectra of L, upon addition of pyrene  $(DMSO/H_2O, 4/1, v/v; 20 \text{ mM HEPES buffer, pH 7.4}).$ 

**Figure S22** Plot of emission intensities of L (20  $\mu$ M; DMSO/H<sub>2</sub>O, 4/1, v/v; 20 mM HEPES buffer, pH 7.4) as a function of added pyrene (0.0001-3000  $\mu$ M).

**Figure S23** Hill plot for determination of binding constant of L to pyrene (20  $\mu$ M; DMSO/H<sub>2</sub>O, 4/1, v/v; 20 mM HEPES buffer, pH 7.4).

**Figure S24** Job plot for determination of stoichiometry of interaction between L and pyrene (DMSO/H<sub>2</sub>O, 4/1, v/v; 20 mM HEPES buffer, pH 7.4,  $\lambda_{Ex} = 336$  nm) (left) and Fluorescence intensity decreases upon interaction between pyrene and 1-pyrene carboxaldehyde (right) **Scheme S1** Aggregation induced emission guided by  $\pi$ – $\pi$  stacking.

Scheme S2 Fluorescence enhancement through charge transfer (CT) complex.

Scheme S3 Requirement of –NH<sub>2</sub> group in azo-moiety to stabilize AIE process.

Figure S25 Fluorescence spectra of L1 (20 µM, DMSO/H<sub>2</sub>O, 4/1, v/v, 20 mM HEPES buffer, pH

7.4) in presence of pyrene ( $\lambda_{Ex} = 302 \text{ nm}$ ).

Figure S26 Fluorescence spectra of L2 (20 µM, DMSO/H<sub>2</sub>O, 4/1, v/v, 20 mM HEPES buffer,

pH 7.4) in presence of pyrene ( $\lambda_{Ex} = 300$  nm).

**Figure S27** Fluorescence spectra of L3 (20  $\mu$ M, DMSO/H<sub>2</sub>O, 4/1, v/v, 20 mM HEPES buffer, pH 7.4) in presence of pyrene ( $\lambda_{Ex} = 282$  nm).

Figure S28 FTIR spectrum of [L-pyrene] adduct.

Figure S29 DLS of [L1- pyrene] and [L2- pyrene] adducts in (DMSO/H<sub>2</sub>O, 4/1, v/v)

Figure S30 Theoretical absorption spectrum of L.

Figure S31 FTIR spectra of silica immobilized L (left) and its pyrene sorbed form (right).

Table S1 Crystal refinement parameters for L

Table S2 Selected bond lengths [Å] and angles [°] for L

 Table S3 Structural parameters of L derived from TDDFT studies

Table S4 Structural parameters of [L-pyrene] adduct derived from TDDFT studies

**Table S5** Experimental vs. theoretical FTIR data of L

Table S6 Electronic transitions in L predicted from TDDFT calculations

Table S7 Electronic transitions in [L-pyrene] adduct predicted from TDDFT calculations

#### Reference

#### 1. Materials and equipment

High-purity HEPES buffer, 6-amino-1, 3-dimethyl uracil, 2-thiouracil, benzoic acid, pnitroaniline, p-nitrophenol and Sodium Nitrate have been purchased from Sigma–Aldrich (India). The spectroscopic grade solvents have been used whenever it required. Other chemicals are of analytical reagent grade and used without further purification unless specified otherwise. Milli-Q Millipore water (18.2 M $\Omega$  cm<sup>-1</sup>) is used whenever required. A Shimadzu spectrophotometer (Model No-2450) is used for recording UV-vis. spectra. FTIR spectrum is carried out by Shimadzu FTIR (model IR Prestige 21 CE) spectrophotometer. Mass spectra in positive mode is carried out by QTOF 60 Micro YA 263 mass spectrometer. The steady state fluorescence spectra have been recorded with a Hitachi F-4500 spectrofluorimeter. Time-resolved fluorescence lifetime measurements are performed with a picosecond pulsed diode laser-based time-correlated singlephoton counting (TCSPC) spectrometer (IBH, UK,  $\lambda_{ex} = 384$  nm) coupled to MCP-PMT detector (Model FL-1057). A Systronics digital pH meter (model 335) is used for pH measurement. <sup>1</sup>HNMR spectra are recorded on a Bruker Avance III HD (400 MHz) spectrometer. The GAUSSIAN-09 revision C.01 program package is used for all geometries and energies calculations.

#### 2. General method of UV-Vis and fluorescence titration

Path length of the cells used for absorption and emission studies has 1 cm. For UV-Vis and fluorescence titrations, stock solution of L, L1, L2, and L3 are prepared (20  $\mu$ M) in DMSO/H<sub>2</sub>O (4/1, v/v, pH 7.4) HEPES (20 mM) buffer. Working solutions of L, L1, L2 and pyrene have been prepared from their respective stock solutions. Fluorescence measurements are performed using 5 nm x 5 nm slit width.

#### 3. Job's experiment using fluorescence method

A series of solutions containing L and pyrene are prepared such that the total concentration of pyrene and the probes remained constant (20  $\mu$ M) in each set. The mole fraction (X) of the probes are varied from 0.1 to 0.9. The fluorescence intensity at its emission point is plotted against the mole fraction of the ligands (L) in solution.

#### 4. Real sample analysis

Among all PAHs compounds, pyrene is moderately water soluble. It can easily contaminate water bodies as an effluent from various sources. Hence, development of appropriate optical probe that can detect and estimate traces of pyrene in real samples is a social demand. For analysis, the real samples have been collected from pond and tap and analyzed by the present method. To assess the precision of the method, studies have been performed at different concentrations of pyrene.

#### 5. Solid phase extraction of pyrene using silica immobilized L

The immobilization of L on silica gel (100-120 mesh) is achieved following reported process.<sup>1-2</sup> L (3.5g) and silica (15.5g) are mixed together in 30 mL MeOH and refluxed for 4h. The solvent is removed under vacuum and air dried. A glass column (10 cm  $\times$  1 cm) is packed with the immobilized probe with a bed volume, 10 mL This packed column is now ready for sorption-desorption studies of pyrene.



Figure S1 QTOF-MS (ES<sup>+</sup>) spectrum of L in MeOH.



Figure S2 <sup>1</sup>HNMR spectrum of L in DMSO-d<sub>6</sub>.



Figure S3 <sup>13</sup>CNMR spectrum of L in DMSO-d<sub>6</sub>.



Figure S4 FTIR spectrum of L.



Figure S5 (a) Absorption; (b) excitation and (c) emission spectra of L (DMSO/  $H_2O$ , 4/1, v/v, 20  $\mu$ M, pH 7.4).



Figure S6 QTOF-MS (ES<sup>+</sup>) spectrum of L1 in MeOH.



Figure S7 <sup>1</sup>HNMR spectrum of L1 in DMSO-d<sub>6</sub>.



Figure S8 FTIR spectrum of L1.



Figure S9 (a) Absorption; (b) excitation and (c) emission spectra of L1 (DMSO/  $H_2O$ , 4/1, v/v, 20  $\mu$ M, pH 7.4).



Figure S10 QTOF-MS (ES<sup>+</sup>) spectrum of L2 in MeOH.



Figure S11 <sup>1</sup>H NMR spectrum of L2 in DMSO-d<sub>6</sub>.



Figure S12 FTIR spectrum of L2.



Figure S13 (a) Absorption; (b) excitation and (c) emission spectra of L2 (in DMSO/  $H_2O$ , 4/1, v/v, 20  $\mu$ M, pH 7.4).



Figure S14 QTOF-MS (ES<sup>+</sup>) spectrum of L3 in MeOH.



Figure S15<sup>1</sup>HNMR spectrum of L3 in DMSO-d<sub>6</sub>



Figure S16 FTIR spectrum of L3.



Figure S17 (a) Absoption; (b) excitation and (c) emission spectra of L3 (DMSO/  $H_2O$ , 4/1, v/v, 20  $\mu$ M, pH 7.4).



Figure S18 Packing diagram of L



Figure S19 Effect of pH on the emission intensities of free L and its pyrene adduct.



**Figure S20** Relative emission intensities of [L-pyrene] adduct (1:1, 20  $\mu$ M, red bar) in presence of other PAHs (20  $\mu$ M, black bar) in DMSO/H<sub>2</sub>O (4/1; v/v, pH 7.4) ( $\lambda_{Ex}$  = 336 nm).



**Figure S21** Plot of emission intensities of L (20  $\mu$ M; DMSO/H<sub>2</sub>O, 4/1, v/v; 20 mM HEPES buffer, pH 7.4) as a function of added pyrene (0.0001-3000  $\mu$ M).



**Figure S22** Hill plot for determination of binding constant of L to pyrene (20  $\mu$ M; DMSO/H<sub>2</sub>O, 4/1, v/v; 20 mM HEPES buffer, pH 7.4).





Scheme S1 Aggregation induced emission of L guided by  $\pi - \pi$  stacking.



Scheme S2 Fluorescence enhancement through charge transfer (CT) complex.



Scheme S3 Necessity of -NH<sub>2</sub> in azo-moiety to stabilize AIE process.



**Figure S24** Changes in the emission spectra of L (20  $\mu$ M) *vs.* [pyrene] at room temperature in DMSO medium (with no added water); [pyrene] = 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 400, 600, 800, 1000, 1200, 1400, 1500, 2000, 2500 and 3000  $\mu$ M),  $\lambda_{Ex} = 336$  nm.



**Figure S25** Fluorescence spectra of L1 (20  $\mu$ M, DMSO/H<sub>2</sub>O, 4/1, v/v, 20 mM HEPES buffer, pH 7.4) in presence of pyrene ( $\lambda_{Ex} = 302$  nm).



**Figure S26** Fluorescence spectra of L2 (20  $\mu$ M, DMSO/H<sub>2</sub>O, 4/1, v/v, 20 mM HEPES buffer, pH 7.4) in presence of pyrene ( $\lambda_{Ex} = 300$  nm).



**Figure S27** Fluorescence spectra of L3 (20  $\mu$ M, DMSO/H<sub>2</sub>O, 4/1, v/v, 20 mM HEPES buffer, pH 7.4) in presence of pyrene ( $\lambda_{Ex} = 282$  nm).



Figure S28 FTIR spectrum of [L-pyrene] adduct.



Figure S29 DLS of [L1- pyrene] and [L2- pyrene] in (DMSO/H<sub>2</sub>O, 4/1, v/v)



Figure S30 Theoretical absorption spectrum of L.



 Table S1 Crystal refinement parameters for L

| Parameters                       | Crystal data for L (CCDC No: 1869304)                           |  |  |
|----------------------------------|-----------------------------------------------------------------|--|--|
| Empirical Formula                | C <sub>12</sub> H <sub>13</sub> ClN <sub>6</sub> O <sub>4</sub> |  |  |
| Moiety Formula                   | $C_{12}H_{13}N_6O_4$ Cl                                         |  |  |
| Molecular weight                 | 340.73                                                          |  |  |
| Crystal color                    | Red                                                             |  |  |
| Crystal description              | rectangular                                                     |  |  |
| Crystal system                   | triclinic                                                       |  |  |
| Cell parameter                   | 6 0 4 0 2 9 0 9 0 1                                             |  |  |
| a u<br>b ß                       | 0.9402 89.801                                                   |  |  |
| ο μ<br>ς γ                       | 32.837 70.483                                                   |  |  |
| Density                          | 1.432                                                           |  |  |
| Volume                           | 1580.1(7)                                                       |  |  |
| Space group                      | 'P -1'                                                          |  |  |
| Hall group                       | '-P 1'                                                          |  |  |
| Temperature                      | 293(2)                                                          |  |  |
| Ζ                                | 4                                                               |  |  |
| Absorption coefficient(mm-1)     | 0.271                                                           |  |  |
| F000                             | 704.0                                                           |  |  |
| h, k, l max                      | 9,10,45                                                         |  |  |
| Reflections threshold expression | $I > 2 \setminus s(I)$                                          |  |  |
| Wavelength                       | 0.71073                                                         |  |  |
| Theta (min)                      | 2.481                                                           |  |  |
| Theta (max)                      | 29.801                                                          |  |  |
| Theta (full)                     | 25.242                                                          |  |  |

| ATOMS          | ANGLE    | ATOMS     | LENGTH   |
|----------------|----------|-----------|----------|
| C00P N007 C00Q | 122.2(6) | O003 C00Q | 1.238(9) |
| C00P N007 C018 | 124.2(6) | O004 C015 | 1.236(8) |
| C00Q N007 C018 | 113.6(6) | O005 C00Z | 1.229(9) |
| C00X N008 C00Q | 123.0(6) | O006 C00X | 1.256(8) |
| C00X N008 C01C | 116.8(6) | N007 C00P | 1.346(9) |
| C00Q N008 C01C | 120.1(6) | N007 C00Q | 1.410(8) |
| C00R N009 N4   | 120.2(6) | N007 C018 | 1.489(9) |
| N3 N00A C00U   | 120.2(6) | N008 C00X | 1.367(9) |
| COOT NOOB COOZ | 122.4(6) | N008 C00Q | 1.375(9) |
| C00T N00B C01B | 124.0(6) | N008 C01C | 1.477(9) |
| C00Z N00B C01B | 113.6(6) | N009 C00R | 1.319(9) |
| C015 N9 C00Z   | 124.1(6) | N009 N4   | 1.316(8) |
| C015 N9 C01A   | 116.3(6) | N00A N3   | 1.327(8) |
| C00Z N9 C01A   | 119.4(6) | N00A C00U | 1.319(9) |
| C00P N8 H4A    | 109.5    | N00B C00T | 1.342(9) |
| C00P N8 H4B    | 109.5    | N00B C00Z | 1.424(9) |
| H4A N8 H4B     | 109.5    | N00B C01B | 1.481(9) |

Table S2 Selected bond lengths [Å] and angles [°] for L

| C00P N8 H4C    | 109.5    | O1 N1     | 1.241(8)  |
|----------------|----------|-----------|-----------|
| H4A N8 H4C     | 109.5    | N9 C015   | 1.362(9)  |
| H4B N8 H4C     | 109.5    | N9 C00Z   | 1.383(9)  |
| N00A N3 C00W   | 120.2(6) | N9 C01A   | 1.492(9)  |
| N009 N4 C011   | 120.7(6) | N8 C00P   | 1.327(9)  |
| C00T N7 H3A    | 109.5    | N8 H4A    | 0.8901    |
| C00T N7 H3B    | 109.5    | N8 H4B    | 0.8901    |
| H3A N7 H3B     | 109.5    | N8 H4C    | 0.8901    |
| C00T N7 H3C    | 109.5    | N3 C00W   | 1.407(9)  |
| H3A N7 H3C     | 109.5    | N4 C011   | 1.418(10) |
| H3B N7 H3C     | 109.5    | O00H N1   | 1.224(8)  |
| O00H N1 O1     | 122.3(7) | N7 C00T   | 1.322(9)  |
| O00H N1 C00S   | 118.7(6) | N7 H3A    | 0.8900    |
| O1 N1 C00S     | 119.0(6) | N7 H3B    | 0.8900    |
| O00L N2 O2     | 122.4(7) | N7 H3C    | 0.8900    |
| O00L N2 C00Y   | 118.9(7) | O2 N2     | 1.246(8)  |
| O2 N2 C00Y     | 118.8(6) | N1 C00S   | 1.462(9)  |
| N8 C00P N007   | 120.9(6) | O00L N2   | 1.215(9)  |
| N8 C00P C00R   | 120.2(6) | N2 C00Y   | 1.450(10) |
| N007 C00P C00R | 118.9(6) | COOP COOR | 1.438(10) |
| O003 C00Q N008 | 121.6(6) | COOR COOX | 1.467(9)  |
| O003 C00Q N007 | 119.1(6) | C00S C00V | 1.382(10) |

| N008 C00Q N007 | 119.2(6) | C00S C010 | 1.392(10) |
|----------------|----------|-----------|-----------|
| N009 C00R C00P | 116.9(6) | C00T C00U | 1.447(10) |
| N009 C00R C00X | 123.8(6) | C00U C015 | 1.484(10) |
| C00P C00R C00X | 119.3(6) | C00V C012 | 1.386(11) |
| C00V C00S C010 | 123.5(7) | C00V H00V | 0.9300    |
| C00V C00S N1   | 118.6(6) | C00W C019 | 1.394(10) |
| C010 C00S N1   | 117.9(6) | C00W C014 | 1.411(10) |
| N7 C00T N00B   | 120.6(6) | C00Y C016 | 1.388(10) |
| N7 C00T C00U   | 120.9(6) | C00Y C017 | 1.414(10) |
| N00B C00T C00U | 118.5(6) | C010 C013 | 1.405(11) |
| N00A C00U C00T | 116.7(6) | C010 H010 | 0.9300    |
| N00A C00U C015 | 123.2(6) | C011 C013 | 1.378(10) |
| C00T C00U C015 | 120.0(6) | C011 C012 | 1.407(9)  |
| C00S C00V C012 | 118.3(6) | C012 H012 | 0.9300    |
| C00S C00V H00V | 120.9    | C013 H013 | 0.9300    |
| C012 C00V H00V | 120.9    | C014 C016 | 1.372(11) |
| C019 C00W N3   | 115.8(6) | C014 H014 | 0.9300    |
| C019 C00W C014 | 121.1(7) | C016 H016 | 0.9300    |
| N3 C00W C014   | 123.1(6) | C017 C019 | 1.386(11) |
| O006 C00X N008 | 121.3(6) | C017 H017 | 0.9300    |
| O006 C00X C00R | 121.4(6) | C018 H01A | 0.9600    |
| N008 C00X C00R | 117.3(6) | C018 H01B | 0.9600    |

| C016 C00Y C017 | 122.4(7) | C018 H01C | 0.9600 |
|----------------|----------|-----------|--------|
| C016 C00Y N2   | 119.7(7) | C019 H019 | 0.9300 |
| C017 C00Y N2   | 117.9(6) | C01A H01D | 0.9600 |
| O005 C00Z N9   | 121.8(6) | C01A H01E | 0.9600 |
| O005 C00Z N00B | 119.5(6) | C01A H01F | 0.9600 |
| N9 C00Z N00B   | 118.7(6) | C01B H01G | 0.9600 |
| C00S C010 C013 | 117.8(6) | C01B H01H | 0.9600 |
| C00S C010 H010 | 121.1    | C01B H01I | 0.9600 |
| C013 C010 H010 | 121.1    | C01C H01J | 0.9600 |
| C013 C011 C012 | 121.8(7) | C01C H01K | 0.9600 |
| C013 C011 N4   | 115.7(6) | C01C H01L | 0.9600 |
| C012 C011 N4   | 122.4(6) |           |        |
| C00V C012 C011 | 119.2(6) |           |        |
| C00V C012 H012 | 120.4    |           |        |
| C011 C012 H012 | 120.4    |           |        |
| C011 C013 C010 | 119.3(6) |           |        |
| C011 C013 H013 | 120.3    |           |        |
| C010 C013 H013 | 120.3    |           |        |
| C016 C014 C00W | 119.3(7) |           |        |
| C016 C014 H014 | 120.3    |           |        |
| C00W C014 H014 | 120.3    |           |        |
| O004 C015 N9   | 121.8(6) |           |        |

| O004 C015 C00U | 122.0(6) |  |
|----------------|----------|--|
| N9 C015 C00U   | 116.1(6) |  |
| C014 C016 C00Y | 119.3(7) |  |
| C014 C016 H016 | 120.4    |  |
| C00Y C016 H016 | 120.4    |  |
| C019 C017 C00Y | 117.7(7) |  |
| C019 C017 H017 | 121.2    |  |
| C00Y C017 H017 | 121.2    |  |
| N007 C018 H01A | 109.5    |  |
| N007 C018 H01B | 109.5    |  |
| H01A C018 H01B | 109.5    |  |
| N007 C018 H01C | 109.5    |  |
| H01A C018 H01C | 109.5    |  |
| H01B C018 H01C | 109.5    |  |
| C017 C019 C00W | 120.1(7) |  |
| C017 C019 H019 | 119.9    |  |
| C00W C019 H019 | 119.9    |  |
| N9 C01A H01D   | 109.5    |  |
| N9 C01A H01E   | 109.5    |  |
| H01D C01A H01E | 109.5    |  |
| N9 C01A H01F   | 109.5    |  |
| H01D C01A H01F | 109.5    |  |

| H01E C01A H01F | 109.5 |  |
|----------------|-------|--|
| N00B C01B H01G | 109.5 |  |
| N00B C01B H01H | 109.5 |  |
| H01G C01B H01H | 109.5 |  |
| N00B C01B H01I | 109.5 |  |
| H01G C01B H01I | 109.5 |  |
| H01H C01B H01I | 109.5 |  |
| N008 C01C H01J | 109.5 |  |
| N008 C01C H01K | 109.5 |  |
| H01J C01C H01K | 109.5 |  |
| N008 C01C H01L | 109.5 |  |
| H01J C01C H01L | 109.5 |  |
| H01K C01C H01L | 109.5 |  |

**Table S3** Structural parameters of L derived from TDDFT studies

| Multiplicity                     | 1   |
|----------------------------------|-----|
| Number of electrons              | 158 |
| Number of alpha electrons        | 79  |
| Number of beta electrons         | 79  |
| Number of basic functions        | 222 |
| Number of independent functions  | 222 |
| Number of point charges in /Mol/ | 0   |

| Number of translation vectors | 0  |
|-------------------------------|----|
| Atomic numbers                | 34 |

# Table S4 Structural parameters of [L-pyrene] derived from TDDFT studies

| Multiplicity                    | 1   |
|---------------------------------|-----|
| Number of electrons             | 264 |
| Number of alpha electrons       | 132 |
| Number of beta electrons        | 132 |
| Number of basic functions       | 386 |
| Number of independent functions | 386 |

## Table S5 Experimental vs. theoretical FTIR data of L

| Experimental (cm <sup>1</sup> ) | Theoretical (cm <sup>-1</sup> ) | Assignments                     |
|---------------------------------|---------------------------------|---------------------------------|
|                                 |                                 |                                 |
| 3546                            | 3601, 3442                      | υ(-NH <sub>2</sub> )            |
| 3295                            | 3066, 3011                      | v(aromatic C–H)                 |
| 3295                            | 3202                            | υ(sp <sup>3</sup> C-H)          |
| 2976                            | 2948                            | υ(-C=O)                         |
| 1651                            | 1656                            | υ(-C=C)                         |
| 1500                            | 1524, 1478, 1462                | υ(-N=N-)                        |
| 1426                            | 1429, 1422                      | v(-C-N)                         |
| 1303                            | 1352, 1347, 1312                | vC-H (bending)                  |
| -                               | 1295, 1287, 1263                | vC-O (anti-symmetry stretching) |
| 1106                            | 1114, 1103, 1077                | vC-O (symmetry stretching)      |

| 1054 | 1023, 1046, 1073, 1082 | vC-N (symmetry stretching) |
|------|------------------------|----------------------------|
|      |                        |                            |

Table S6 Electronic transitions predicted from TDDFT calculations for L

| Electronic<br>transitions      | Energy (eV) | f <sup>b</sup> | Wavelength (nm)     | Transitions involved           |
|--------------------------------|-------------|----------------|---------------------|--------------------------------|
| S <sub>0</sub> -S <sub>1</sub> | 2.7856 eV   | f = 0.0041     | 445.09 nm           | HOMO→LUMO<br>HOMO →LUMO+2      |
| S <sub>0</sub> -S <sub>2</sub> | 3.1132 eV   | f = 0.0028     | 398.25 nm           | HOMO-2→LUMO+1<br>HOMO-3→LUMO+1 |
| 3 <sub>0</sub> -3 <sub>3</sub> | 3.6694 eV   | f = 0.0016     | <i>331.</i> 89 IIII | HOMO-1→LUMO+1                  |

 Table S7 Electronic transitions predicted from TDDFT calculations for L-pyrene adduct

| Electronic                     | Energy (eV) | f <sup>b</sup> | Wavelength (nm) | Transitions involved |
|--------------------------------|-------------|----------------|-----------------|----------------------|
|                                |             |                |                 |                      |
| S <sub>0</sub> -S <sub>1</sub> | 2.2099 eV   | f = 0.0096     | 561.05 nm       | HOMO→LUMO            |
|                                |             |                |                 | HOMO →LUMO+2         |
| S <sub>0</sub> -S <sub>2</sub> | 2.9617 eV   | f = 0.0078     | 433.25 nm       | HOMO-1→LUMO          |
|                                |             |                |                 | HOMO-1→LUMO+1        |
|                                |             |                |                 | HOMO→LUMO+1          |
|                                |             |                |                 |                      |
| S <sub>0</sub> -S <sub>3</sub> | 3.3929 eV   | f = 0.0045     | 365.42 nm       | HOMO-1→LUMO+1        |
|                                |             |                |                 | HOMO→LUMO            |
|                                |             |                |                 | HOMO→LUMO+1          |
|                                |             |                |                 | HOMO →LUMO+2         |
|                                |             |                |                 |                      |

## Reference

- Malik, A.; Verma, P.; Singh A. K. and Singh, K. P. Distribution of polycyclic aromatic hydrocarbons in water and bed sediments of the Gomti River, India. *Environ. Monit. Assess.*, 2011, 172, 529–545.
- Nandi, S.; Adhikari, S.; Mandal, S.; Banerjee A. and Das, D. Tuning FRET efficiency as a novel approach for improved detection of naphthalene: application to environmental samples. *J. Mol. Recognit.*, 2016, 29, 303–307.