Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Iron vs Ruthenium: Syntheses, structures and IR spectroelectrochemical characterisation of halfsandwich Group 8 acetylide complexes[†]

Daniel P. Harrison, Varshini Jayantha Kumar, Johanna N. Noppers, Josef B.G. Gluyas, Alexandre N. Sobolev, Stephen A. Moggach, Paul J. Low

School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia

Table of Contents

Figure S1 Plots of the cyclic voltammograms (CV) data for complexes [1a-d] - [5a-d] (CH ₂ Cl ₂ , 0.1 M NBu ₄ PF ₆ , room temperature) vs ferrocene/ferricenium [$E_{1/2}$ (Fc/Fc ⁺) = 0 V] at a platinum working electrode
Figure S2 Plots of the IR spectroelectrochemical results (from 0.1 M NBu ₄ PF ₆ / CH ₂ Cl ₂ solutions) for compounds [1b-d] ⁿ⁺ – [5b-d] ⁿ⁺ (n= 0, 1)10
Table S1 . Summary of the ¹³ C{ ¹ H} NMR data (δ / ppm) from complexes [1a-d] – [5a-d]11
Figure S3. The ¹ H NMR spectrum of [1a]. The inset shows an expansion of the aromatic region for clarity
Figure S4. The ³¹ P NMR spectrum of [1 <i>a</i>]14
Figure S5. The ¹³ C{ ¹ H} NMR spectrum of [1a]. The inset shows an expansion of the aromatic region for clarity
Figure S6. The ESI(+) mass spectrum of [1a]16
Figure S7. The ¹ H NMR spectrum of [1b]17
Figure S8. The ³¹ P NMR spectrum of [1b]18
Figure S9. The ¹³ C{ ¹ H} NMR spectrum of [1b]. The inset shows an expansion of the aromatic region for clarity
Figure S10. The ESI(+) mass spectrum of [1b]20
Figure S11. The ¹ H NMR spectrum of [1c]. The inset shows an expansion of the aromatic region for clarity
Figure S12. The ³¹ P NMR spectrum of [1c]22
Figure S13. The ¹³ C{ ¹ H} NMR spectrum of [1c]. The inset shows an expansion of the aromatic region for clarity23
Figure S14. The ESI(+) mass spectrum of [1c]24
Figure S15. The ¹ H NMR spectrum of [1d]25
Figure S16. The ³¹ P NMR spectrum of [1d]26
Figure S17. The ¹³ C{H} NMR spectrum of [1d]27
Figure S18. The ESI(+) mass spectrum of [1d]28
Figure S19. The ¹ H NMR spectrum of [2a]29
Figure S20. The ³¹ P NMR spectrum of [2a]

Figure S21. The ¹³ C{ ¹ H} NMR spectrum of [2a]. The inset shows an expansion of the aromatic region for clarity.	31
Figure S22. The ESI(+) mass spectrum of [2a].	32
Figure S23. The ¹ H NMR spectrum of [2b]. The inset shows an expansion of the aromatic region clarity.	for 33
Figure S24. The ³¹ P NMR spectrum of [2b].	34
Figure S25. The ¹³ C{ ¹ H} NMR spectrum of [2b]. The inset shows an expansion of the aromatic	25
Figure 526 The ESI(1) mean enerthing of [2h]	35
Figure S26. The ESI(+) mass spectrum of [26].	30
Figure 527. The ² H NMR spectrum of [2c].	
Figure 526. The ¹³ C(14) NMP encetrum of [2c]. The inset shows an expansion of the aromatic	
region for clarity.	39
Figure S30. The ESI(+) mass spectrum of [2c]	40
Figure S31. The ¹ H NMR spectrum of [2d].	41
Figure S32. The ³¹ P NMR spectrum of [2d].	42
Figure S33. The ¹³ C{ ¹ H} NMR spectrum of [2d]	43
Figure S34. The ESI(+) mass spectrum of [2d]	44
Figure S35. The ¹ H NMR spectrum of [3a]. The inset shows an expansion of the aromatic region clarity.	for 45
Figure S36. The ³¹ P NMR spectrum of [3a].	46
Figure S37. The ¹³ C{ ¹ H} NMR spectrum of [3a]. The inset shows an expansion of the aromatic region for clarity.	47
Figure S38. The ESI(+) mass spectrum of [3a].	48
Figure S39. The ¹ H NMR spectrum of [3b]. The inset shows an expansion of the aromatic region clarity.	for 49
Figure S40. The ³¹ P NMR spectrum of [3b].	50
Figure S41. The ¹³ C{ ¹ H} NMR spectrum of [3b]. The inset shows an expansion of the aromatic region for clarity.	51
Figure S42. The ESI(+) mass spectrum of [3b]	52
Figure S43. The ¹ H NMR spectrum of [3c]. The inset shows an expansion of the aromatic region clarity.	for 53
Figure S44. The ³¹ P NMR spectrum of [3c]	54
Figure S45. The ¹³ C{ ¹ H} NMR spectrum of [3c]. The inset shows an expansion of the aromatic region for clarity.	55
Figure S46. The ESI(+) mass spectrum of [3c]	56
Figure S47. The ¹ H NMR spectrum of [3d]. The inset shows an expansion of the aromatic region clarity.	for 57
Figure S48. The ³¹ P NMR spectrum of [3d].	58
Figure S49. The ¹³ C{ ¹ H} NMR spectrum of [3d]	59

Figure S50. The ESI(+) mass spectrum of [3d]	60
Figure S51. The ¹ H NMR spectrum of [4 <i>a</i>]. The inset shows an expansion of the aromatic region clarity.	for 61
Figure S52. The ³¹ P NMR spectrum of [4a].	62
Figure S53. The ¹³ C{ ¹ H} NMR spectrum of [4a]. The inset shows an expansion of the aromatic region for clarity.	63
Figure S54. The ESI(+) mass spectrum of [4a].	64
Figure S55. The ¹ H NMR spectrum of [4b].	65
Figure S56. The ³¹ P NMR spectrum of [4b].	66
Figure S57. The ¹³ C{ ¹ H} NMR spectrum of [4b]	67
Figure S58. The ESI(+) mass spectrum of [4b]	68
Figure S59. The ¹ H NMR spectrum of [4c]. The inset shows an expansion of the aromatic region clarity.	for 69
Figure S60. The ³¹ P NMR spectrum of [4c]	70
Figure S61. The ¹³ C{ ¹ H} NMR spectrum of [4c]. The inset shows an expansion of the aromatic region for clarity.	71
Figure S62. The ESI(+) mass spectrum of [4c]	72
Figure S63. The ¹ H NMR spectrum of [4d].	73
Figure S64. The ³¹ P NMR spectrum of [4d]	74
Figure S65. The ¹³ C{ ¹ H} NMR spectrum of [4d]. The inset shows an expansion of the aromatic region for clarity.	75
Figure S66. The ESI(+) mass spectrum of [4d]	76
Figure S67. The ¹ H NMR spectrum of [5a]. The inset shows an expansion of the aromatic region clarity	for 77
Figure S68. The ³¹ P NMR spectrum of [5a].	78
Figure S69. The ¹³ C{ ¹ H} NMR spectrum of [5a]. The inset shows an expansion of the aromatic region for clarity.	79
Figure S70. The ESI(+) mass spectrum of [5a].	80
Figure S71. The ¹ H NMR spectrum of [5b]. The inset shows an expansion of the aromatic region clarity.	for 81
Figure S72. The ³¹ P NMR spectrum of [5b].	82
Figure S73. The ¹³ C{ ¹ H} NMR spectrum of [5b]. The inset shows an expansion of the aromatic region for clarity.	83
Figure S74. The ESI(+) mass spectrum of [5b]	84
Figure S75. The ¹ H NMR spectrum of [5c]. The inset shows an expansion of the aromatic region clarity	for 85
Figure S76. The ³¹ P NMR spectrum of [5c]	86
Figure S77. The ¹³ C{ ¹ H} NMR spectrum of [5c]. The inset shows an expansion of the aromatic region for clarity.	87
Figure S78. The ESI(+) mass spectrum of [5c]	88

Figure S79. The ¹ H NMR spectrum of [5d]. The inset shows an expansion of the aromatic region for clarity	or 39
Figure S80. The ³¹ P NMR spectrum of [5d]) 0
Figure S81. The ¹³ C{ ¹ H} NMR spectrum of [5d]	<i>)</i> 1
Figure S82. The ESI(+) mass spectrum of [5d]	<i>}</i> 2
Table S2. X-ray Single-Crystal Experimental Details.) 3
Figure S83 . Structure of 1d with anisotropic displacement parameters drawn at 50% probability. Colour scheme is grey: Carbon, orange: Phosphorous and yellow: Iron. H-atoms have been removed for clarity) 95
Figure S84 . Structure of 2a with anisotropic displacement parameters drawn at 50% probability. Colour scheme is grey: Carbon, orange: Phosphorous and yellow: Iron. H-atoms have been removed for clarity.	95
Figure S85 . Structure of 2b with anisotropic displacement parameters drawn at 50% probability. Colour scheme is red: Oxygen, grey: Carbon, orange: Phosphorous and Teal: Ruthenium. H-atoms have been removed for clarity	96
Figure S86 . Structure of 2d with anisotropic displacement parameters drawn at 50% probability. Colour scheme is grey: Carbon, orange: Phosphorous and yellow: Iron. H-atoms have been removed for clarity.) 96
Figure S87 . Structure of 3c with anisotropic displacement parameters drawn at 50% probability. Colour scheme is red: Oxygen, blue: Nitrogen, grey: Carbon, orange: Phosphorous and Teal: Ruthenium. H-atoms have been removed for clarity	97
Figure S88 . Structure of 3d with anisotropic displacement parameters drawn at 50% probability. Colour scheme is grey: Carbon, orange: Phosphorous and teal: Ruthenium. H-atoms have been removed for clarity.	98
Figure S89 . Structure of 4b with anisotropic displacement parameters drawn at 50% probability. Colour scheme is red: Oxygen, grey: Carbon, orange: Phosphorous and Teal: Ruthenium. H-atoms have been removed for clarity	98
Figure S90 . Structure of 4d with anisotropic displacement parameters drawn at 50% probability. Colour scheme grey: Carbon, orange: Phosphorous and Teal: Ruthenium. H-atoms and the disorder on the tert-butyl and Cp ligand have been removed for clarity.	er 99
Figure S91 . Structure of 5d with anisotropic displacement parameters drawn at 50% probability. Colour scheme is grey: Carbon, orange: Phosphorous and Teal: Ruthenium. H-atoms have been removed for clarity.	99
References)()

Figure S1 Plots of the cyclic voltammograms (CV) data for complexes [**1a-d**] - [**5a-d**] (CH₂Cl₂, 0.1 M NBu₄PF₆, room temperature) vs ferrocene/ferricenium [$E_{1/2}$ (Fc/Fc⁺) = 0 V] at a platinum working electrode.

Figure S2 Plots of the IR spectroelectrochemical results (from 0.1 M NBu_4PF_6 / CH_2Cl_2 solutions) for compounds $[1b-d]^{n+} - [5b-d]^{n+}$ (n= 0, 1).

Table S1. Summary of the ${}^{13}C{}^{1}H$ NMR data (δ / ppm) from complexes [1a-d] – [5a-d].

	α (<i>J</i> _{CP})	β	1	2	3	4	i	o (<i>J_{CP}</i>)	m	p	dppe	Ср	Me	OMe	CMe ₃	CMe ₃	Ref
1 a	137.4 (t, <i>40</i> Hz)	120.3	130.6	131.7	127.5	123.2	139.8, 137.8	134.7, 134.0	127.4, 127.2	129.2, 129.0	31.1	87.8	10.5				1
1b	132.0 (m)	119.3	124.8	131.5	114.1	156.7	140.0, 138.2	134.7, 134.4	127.4, 127.2	129.2, 128.9	31.2	87.7	10.5	54.9			2
1c	165.9 (t, <i>40</i> Hz)	125.1	137.7	129.7	124.0	141.8	138.3, 136.8	134.0, 133.9	127.6, 127.4	129.4, 129.3	30.8	88.8	10.2				2
1d	107.7 (m)	124.8					140.4, 138.7	134.9, 134.3	127.3, 127.2	128.9, 128.7	30.4	87.0	10.5		31.1	33.0	2
2a	125.0 (t, <i>41</i> Hz)	120.6	130.0	130.4	127.5	123.0	142.5, 138.2	133.9, 131.9	128.7, 128.0	129.3, 128.9	28.6	79.2					3
2b	132.9 (m)	119.7	123.1	131.3	113.1	155.9	142.6, 138.3	133.9, 131.9	128.0, 127.7	129.2, 128.8	28.5	79.1		55.3			
2c	146.4 (m)	124.0	136.8	130.3	123.7	143.3	142.0, 137.9	133.8, 132.1	128.2, 127.9	129.7, 129.1	28.7	80.1					4
2d	95.0 (t, <i>43</i> Hz)	-					144.0 139.2	134.7, 132.0	127.9, 127.4	129.2, 128.5	28.6	79.3			30.2	32.8	5

3a	128.9 (m)	109.8	131.5	130.3	127.6	122.6	139.1, 137.1	133.9, 133.4 (t, <i>4.3</i> Hz)	127.5, 127.3	129.0, 128.9	29.6	92.7	10.2				6
3b	124.3 (t, <i>25</i> Hz)	108.5	124.5	131.2	113.3	155.7	139.3, 137.2	133.9, 133.4 (t, <i>4.5</i> Hz)	127.5, 127.2 (t, 4.5 Hz)	128.9, 128.8	29.6	92.6	10.2	55.4			6
3c	152.8 (t, <i>24</i> Hz)	114.3	138.5	130.0	123.6	142.1	138.2, 136.4	133.5, 133.2 (t, <i>5.3</i> Hz)	127.8, 127.5 (t, 4.5Hz)	129.4, 129.3	29.5	93.4	10.1				6
3d	100.5 (t, 26Hz)	116.4					139.7, 137.8	134.2, 133.3 (t, <i>4.5</i> Hz)	127.4, 127.0 (t, 4.5 Hz)	128.6	29.6	91.9	10.1		29.4	32.8	5
4 a	116.1	111.7	129.9	130.5	127.1	122.9	142.4, 137.0	133.9, 131.5	127.8, 127.6	129.2, 128.8	28.0	82.4					7
4b	112.0 (t, 25Hz)	110.9	123.1	131.7	113.0	156.0	142.7, 137.4	134.1, 131.8 (t, 5.2 Hz)	128.0, 127.8 (t, 5.0 Hz)	129.4, 129.0	28.2	82.5		55.3			
4 c	138.4 (t, 25Hz)	114.7	137.4	130.5	123.3	142.7	141.8, 136.4	131.6, 133.9 (t, <i>5.2</i> Hz)	128.3, 128.0 (t, 4.6 Hz)	129.8, 129.3	28.3	83.1					8
4d	88.3 (t, 25Hz)	119.0					143.6, 137.4	134.5, 131.5 (t, <i>5.2</i> Hz)	127.8, 127.4 (t, 4.6 Hz)	129.0, 128.5	28.2	82.2			29.4	32.3	
5a	116.3 (t, <i>25</i> Hz)	114.5	130.7	130.6	127.8	123.1	139.1 (t, <i>20.4</i> Hz)	134.0 (t, <i>5.3</i> Hz)	127.3 (t, 4.5 Hz)	128.5		85.3					9
5b	111.8 (t, 25Hz)	113.3	123.8	131.5	113.4	156.0	139.1 (t, <i>20.8</i> Hz)	134.01 (t, <i>4.9</i> Hz)	127.3 (t, 4.5 Hz)	128.5		85.2		55.4			10
5c	139.1 (t, 25Hz)	117.6	137.7	130.5	123.8	142.8	138.6	133.8 (t, 4.5 Hz)	127.5 (t, <i>4.5</i> Hz)	128.8		85.8					11
5d	86.4 (t, <i>25</i> Hz)	120.3					139.6	134.1 (t, <i>4.5</i> Hz)	127.0 (t, 4.5 Hz)	128.2		85.2			30.2	33.1	5

Figure S3. The ¹H NMR spectrum of [1a]. The inset shows an expansion of the aromatic region for clarity.

Figure S4. The ³¹P NMR spectrum of [1a].

Figure S5. The ${}^{13}C{}^{1}H$ NMR spectrum of [1a]. The inset shows an expansion of the aromatic region for clarity.

Figure S6. The ESI(+) mass spectrum of [1a].

Figure S7. The ¹H NMR spectrum of [1b].

Figure S8. The ³¹P NMR spectrum of [1b].

Figure S9. The ${}^{13}C{}^{1}H$ NMR spectrum of [1b]. The inset shows an expansion of the aromatic region for clarity.

Figure S10. The ESI(+) mass spectrum of [1b].

Figure S11. The ¹H NMR spectrum of [1c]. The inset shows an expansion of the aromatic region for clarity.

Figure S12. The ³¹P NMR spectrum of [1c].

Figure S13. The ${}^{13}C{}^{1}H$ NMR spectrum of [1c]. The inset shows an expansion of the aromatic region for clarity.

Figure S14. The ESI(+) mass spectrum of [1c].

Figure S15. The ¹H NMR spectrum of [1d].

Figure S16. The ³¹P NMR spectrum of [1d].

Figure S17. The ${}^{13}C{H}$ NMR spectrum of [1d].

Figure S18. The ESI(+) mass spectrum of [1d].

Figure S19. The ¹H NMR spectrum of [2a].

S29

Figure S20. The ³¹P NMR spectrum of [2a].

Figure S21. The ¹³C{¹H} NMR spectrum of [2a]. The inset shows an expansion of the aromatic region for clarity.

Figure S22. The ESI(+) mass spectrum of [2a].

Figure S23. The ¹H NMR spectrum of [2b]. The inset shows an expansion of the aromatic region for clarity.

Figure S24. The ³¹P NMR spectrum of [2b].

Figure S25. The ${}^{13}C{}^{1}H$ NMR spectrum of [2b]. The inset shows an expansion of the aromatic region for clarity.

Figure S26. The ESI(+) mass spectrum of [2b].

Figure S27. The ¹H NMR spectrum of [2c].

Figure S28. The ³¹P NMR spectrum of [2c].

Figure S29. The ¹³C{¹H} NMR spectrum of [2c]. The inset shows an expansion of the aromatic region for clarity.

Figure S30. The ESI(+) mass spectrum of [2c].

Figure S31. The ¹H NMR spectrum of [2d].

Figure S32. The ³¹P NMR spectrum of [2d].

Figure S33. The ${}^{13}C{}^{1}H$ NMR spectrum of [2d].

Figure S34. The ESI(+) mass spectrum of [2d].

Figure S35. The ¹H NMR spectrum of [3a]. The inset shows an expansion of the aromatic region for clarity.

Figure S36. The ³¹P NMR spectrum of [3a].

Figure S37. The ¹³C{¹H} NMR spectrum of [3a]. The inset shows an expansion of the aromatic region for clarity.

Figure S38. The ESI(+) mass spectrum of [3a].

Figure S39. The ¹H NMR spectrum of [3b]. The inset shows an expansion of the aromatic region for clarity.

Figure S40. The ³¹P NMR spectrum of [3b].

Figure S41. The ${}^{13}C{}^{1}H$ NMR spectrum of [3b]. The inset shows an expansion of the aromatic region for clarity.

Figure S42. The ESI(+) mass spectrum of [3b].

Figure S43. The ¹H NMR spectrum of [3c]. The inset shows an expansion of the aromatic region for clarity.

Figure S44. The ³¹P NMR spectrum of [3c].

Figure S45. The ¹³C{¹H} NMR spectrum of [**3c**]. The inset shows an expansion of the aromatic region for clarity.

Figure S46. The ESI(+) mass spectrum of [3c].

Figure S47. The ¹H NMR spectrum of [3d]. The inset shows an expansion of the aromatic region for clarity.

Figure S48. The ³¹P NMR spectrum of [3d].

Figure S49. The ${}^{13}C{}^{1}H$ NMR spectrum of [3d].

Figure S50. The ESI(+) mass spectrum of [3d].

Figure S51. The ¹H NMR spectrum of [4a]. The inset shows an expansion of the aromatic region for clarity.

Figure S52. The ³¹P NMR spectrum of [4a].

Figure S53. The ${}^{13}C{}^{1}H$ NMR spectrum of [4a]. The inset shows an expansion of the aromatic region for clarity.

Figure S54. The ESI(+) mass spectrum of [4a].

Figure S55. The ¹H NMR spectrum of [4b].

Figure S56. The ³¹P NMR spectrum of [4b].

Figure S57. The ${}^{13}C{}^{1}H$ NMR spectrum of [4b].

Figure S58. The ESI(+) mass spectrum of [4b].

Figure S59. The ¹H NMR spectrum of [4c]. The inset shows an expansion of the aromatic region for clarity.

Figure S60. The ³¹P NMR spectrum of [4c].

Figure S61. The ${}^{13}C{}^{1}H$ NMR spectrum of [4c]. The inset shows an expansion of the aromatic region for clarity.

Figure S62. The ESI(+) mass spectrum of [4c].

Figure S63. The ¹H NMR spectrum of [4d].

Figure S64. The ³¹P NMR spectrum of [4d].

4d

Figure S65. The ${}^{13}C{}^{1}H$ NMR spectrum of [4d]. The inset shows an expansion of the aromatic region for clarity.

Figure S66. The ESI(+) mass spectrum of [4d].

Figure S67. The ¹H NMR spectrum of [5a]. The inset shows an expansion of the aromatic region for clarity.

S77

Figure S68. The ³¹P NMR spectrum of [5a].

Figure S69. The ${}^{13}C{}^{1}H$ NMR spectrum of [5a]. The inset shows an expansion of the aromatic region for clarity.

Figure S70. The ESI(+) mass spectrum of [5a].

Figure S71. The ¹H NMR spectrum of [5b]. The inset shows an expansion of the aromatic region for clarity.

Figure S72. The ³¹P NMR spectrum of [5b].

Figure S73. The ${}^{13}C{}^{1}H$ NMR spectrum of [5b]. The inset shows an expansion of the aromatic region for clarity.

Figure S74. The ESI(+) mass spectrum of [5b].

Figure S75. The ¹H NMR spectrum of [5c]. The inset shows an expansion of the aromatic region for clarity.

Figure S76. The ³¹P NMR spectrum of [5c].

Figure S77. The ¹³C{¹H} NMR spectrum of [5c]. The inset shows an expansion of the aromatic region for clarity.

Figure S78. The ESI(+) mass spectrum of [5c].

Figure S79. The ¹H NMR spectrum of [5d]. The inset shows an expansion of the aromatic region for clarity.

Figure S80. The ³¹P NMR spectrum of [5d].

Figure S81. The ${}^{13}C{}^{1}H$ NMR spectrum of [5d].

Figure S82. The ESI(+) mass spectrum of [5d].

Structure code	1d	2d	3d	4d	5d
Crystal data					
Chemical formula	C ₄₂ H ₄₈ FeP ₂	C ₃₇ H ₃₈ FeP ₂	$C_{42}H_{48}P_2Ru$	$C_{37}H_{38}P_2Ru$	C ₄₇ H ₄₄ P ₂ Ru
M _r	670.59	600.46	715.81	645.68	771.83
Crystal system, space group	Monoclinic, Cc	Triclinic, P^{-1}	Monoclinic, <i>P</i> 2 ₁	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	100	100	99	120	100
a, b, c (Å)	8.3802 (1), 22.2533 (3), 19.4016 (3)	9.9070 (2), 12.3781 (3), 25.5901 (7)	8.7348 (2), 19.3206 (4), 10.6426 (2)	8.6680 (1), 18.5220 (2), 20.3518 (2)	10.7560 (1), 16.9328 (2), 20.8157 (2)
α, β, γ (°)	90, 90.318 (1), 90	91.779 (2), 91.683 (2), 101.312 (2)	90, 96.473 (2), 90	90, 98.041 (1), 90	90, 93.991 (1), 90
$V(Å^3)$	3618.09 (9)	3073.65 (13)	1784.61 (6)	3235.33 (6)	3781.95 (7)
Ζ	4	4	2	4	4
Radiation type	Cu Kα	Μο Κα	Μο <i>Κ</i> α	Cu Kα	Μο Κα
μ (mm ⁻¹)	4.37	0.62	0.56	5.02	0.53
Crystal size (mm)	0.15 × 0.04 × 0.02	0.17 × 0.12 × 0.09	$\begin{array}{c} 0.36\times0.15\times\\ 0.08\end{array}$	0.22 × 0.18 × 0.10	0.26 × 0.19 × 0.18
Data collection					
Diffractometer	Oxford Diffraction Gemini-R Ultra	Oxford Diffraction Xcalibur-S	Xcalibur, Ruby, Gemini ultra	XtaLAB Synergy, Single source at home/near, HyPix	Oxford Diffraction Xcalibur-S
Absorption correction	Multi-scan CrysAlis PRO 1.171.39.46 (Rigaku Oxford Diffraction, 2018)	Multi-scan CrysAlis PRO 1.171.39.46 (Rigaku Oxford Diffraction, 2018)	Multi-scan CrysAlis PRO 1.171.40.53 (Rigaku Oxford Diffraction, 2019)	Analytical CrysAlis PRO 1.171.40.53 (Rigaku Oxford Diffraction, 2019)	Multi-scan CrysAlis PRO 1.171.39.46 (Rigaku Oxford Diffraction, 2018)
T_{\min}, T_{\max}	0.915, 1.0	0.926, 1.0	0.945, 1.000	0.822, 0.912	0.949, 1.0
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15913, 4949, 4455	65673, 20231, 12908	55220, 8148, 7175	160066, 6916, 6215	43512, 12511, 10287
R _{int}	0.060	0.075	0.066	0.092	0.037
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.599	0.753	0.665	0.637	0.753
Refinement					
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.045, 0.110, 1.00	0.057, 0.129, 1.00	0.037, 0.066, 1.08	0.038, 0.106, 1.09	0.036, 0.092, 1.00
No. of reflections	4949	20231	8148	6916	12511
No. of parameters	414	727	390	339	454
No. of restraints	2	0	1	15	0
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} (e {\rm \AA}^{-3})$	0.45, -0.34	0.81, -0.49	1.16, -0.48	0.56, -0.90	0.88, -0.58

 Table S2. X-ray Single-Crystal Experimental Details.

Structure code	2a	2b	3c	4b
Crystal data				
Chemical formula	$C_{39}H_{34}FeP_2$	C ₄₀ H ₃₆ FeOP ₂	$C_{44}H_{43}NO_2P_2Ru$	C40H36OP2Ru
M _r	620.45	650.48	780.80	695.70
Crystal system, space group	Monoclinic, P2/c	Orthorhombic, Pbca	Monoclinic, $P2_1/c$	Orthorhombic, Pbca
Temperature (K)	100	100	100	102
a, b, c (Å)	39.5527 (15), 9.5048 (4), 33.7838 (16)	9.4107 (1), 17.3043 (3), 39.0246 (6)	12.8214 (1), 22.3082 (1), 14.6199 (1)	9.3194 (2), 17.5662 (4), 39.2393 (13)
α, β, γ (°)	90, 100.680 (4), 90	90, 90, 90	90, 113.563 (1), 90	90, 90, 90
$V(\text{\AA}^3)$	12480.7 (9)	6354.98 (16)	3832.96 (5)	6423.7 (3)
Ζ	16	8	4	8
Radiation type	Cu Kα	Cu Kα	Cu Ka	Cu Kα
μ (mm ⁻¹)	5.04	5.00	4.39	5.13
Crystal size (mm)	$0.18 \times 0.03 \times 0.02$	$0.24 \times 0.04 \times 0.03$	$0.33 \times 0.05 \times 0.05$	$0.26 \times 0.09 \times 0.03$
Data collection				
Diffractometer	Oxford Diffraction Gemini-R Ultra	Oxford Diffraction Gemini-R Ultra	Oxford Diffraction Gemini-R Ultra	Xcalibur, Ruby, Gemini ultra
Absorption correction	Multi-scan <i>CrysAlis PRO</i> 1.171.39.46 (Rigaku Oxford Diffraction, 2018)	Multi-scan <i>CrysAlis PRO</i> 1.171.39.46 (Rigaku Oxford Diffraction, 2018)	Multi-scan <i>CrysAlis PRO</i> 1.171.39.46 (Rigaku Oxford Diffraction, 2018)	Multi-scan <i>CrysAlis PRO</i> 1.171.39.46 (Rigaku Oxford Diffraction, 2018)
T_{\min}, T_{\max}	0.942, 1.0	0.705, 1.0	0.650, 1.0	0.871, 1.000
No. of measured, independent and observed [$I > 2\sigma(I)$] reflections	64691, 22211, 12161	29925, 5666, 4162	38371, 6847, 5985	30269, 5711, 3779
R _{int}	0.153	0.103	0.039	0.119
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.599	0.598	0.598	0.598
Refinement				
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.065, 0.151, 0.96	0.055, 0.144, 1.00	0.032, 0.089, 1.00	0.045, 0.091, 1.06
No. of reflections	22211	5666	6847	5711
No. of parameters	1513	398	456	398
No. of restraints	0	0	0	0
$\Delta \rangle_{\text{max}}, \Delta \rangle_{\text{min}} (e \text{ Å}^{-3})$	0.43, -0.45	0.90, -0.42	0.90, -0.33	0.69, -0.38

Computer programs employed for crystallographic work: *CrysAlis PRO* 1.171.39.46 (Rigaku Oxford Diffraction, 2018), *CrysAlis PRO* 1.171.40.53 (Rigaku Oxford Diffraction, 2019), *SHELXT2015*/1,¹² *Olex2.solve* 1.3,¹³ *SHELXL2018*/3 (Sheldrick, 2015), *SHELXL* 2018/3,¹⁴ *X-SEED* v. 4.0,¹⁵ *Olex2* 1.3¹⁶

Figure S83. Structure of **1d** with anisotropic displacement parameters drawn at 50% probability. Colour scheme is grey: Carbon, orange: Phosphorous and yellow: Iron. H-atoms have been removed for clarity.

Figure S84. Structure of **2a** with anisotropic displacement parameters drawn at 50% probability. Colour scheme is grey: Carbon, orange: Phosphorous and yellow: Iron. H-atoms have been removed for clarity.

Figure S85. Structure of **2b** with anisotropic displacement parameters drawn at 50% probability. Colour scheme is red: Oxygen, grey: Carbon, orange: Phosphorous and Teal: Ruthenium. H-atoms have been removed for clarity.

Figure S86. Structure of **2d** with anisotropic displacement parameters drawn at 50% probability. Colour scheme is grey: Carbon, orange: Phosphorous and yellow: Iron. H-atoms have been removed for clarity.

Figure S87. Structure of **3c** with anisotropic displacement parameters drawn at 50% probability. Colour scheme is red: Oxygen, blue: Nitrogen, grey: Carbon, orange: Phosphorous and Teal: Ruthenium. H-atoms have been removed for clarity.

Figure S88. Structure of **3d** with anisotropic displacement parameters drawn at 50% probability. Colour scheme is grey: Carbon, orange: Phosphorous and teal: Ruthenium. H-atoms have been removed for clarity.

Figure S89. Structure of **4b** with anisotropic displacement parameters drawn at 50% probability. Colour scheme is red: Oxygen, grey: Carbon, orange: Phosphorous and Teal: Ruthenium. H-atoms have been removed for clarity.

Figure S90. Structure of **4d** with anisotropic displacement parameters drawn at 50% probability. Colour scheme grey: Carbon, orange: Phosphorous and Teal: Ruthenium. H-atoms and the disorder on the tert-butyl and Cp ligand have been removed for clarity.

Figure S91. Structure of **5d** with anisotropic displacement parameters drawn at 50% probability. Colour scheme is grey: Carbon, orange: Phosphorous and Teal: Ruthenium. H-atoms have been removed for clarity.

References

- 1. N. G. Connelly, M. P. Gamasa, J. Gimeno, C. Lapinte, E. Lastra, J. P. Maher, N. Lenarvor, A. L. Rieger and P. H. Rieger, *J. Chem. Soc. Dalton Trans.*, 1993, 2575-2578.
- 2. R. Denis, L. Toupet, F. Paul and C. Lapinte, *Organometallics*, 2000, **19**, 4240-4251.
- 3. W. M. Khairul, M. A. Fox, N. N. Zaitseva, M. Gaudio, D. S. Yufit, B. W. Skelton, A. H. White, J. A. K. Howard, M. I. Bruce and P. J. Low, *Dalton Trans.*, 2009, 610-620.
- 4. M. H. Garcia, M. P. Robalo, A. R. Dias, M. T. Duarte, W. Wenseleers, G. Aerts, E. Goovaerts, M. P. Cifuentes, S. Hurst, M. G. Humphrey, M. Samoc and B. Luther-Davies, *Organometallics*, 2002, **21**, 2107-2118.
- 5. C. Bitcon and M. W. Whiteley, J. Organomet. Chem., 1987, **336**, 385-392.
- 6. F. Paul, B. G. Ellis, M. I. Bruce, L. Toupet, T. Roisnel, K. Costuas, J. F. Halet and C. Lapinte, *Organometallics*, 2006, **25**, 649-665.
- 7. C. W. Chang, M. C. Cheng, G. H. Lee and S. M. Peng, *Dalton Trans.*, 2019, **48**, 11732-11742.
- 8. C. E. Powell, M. P. Cifuentes, A. M. McDonagh, S. K. Hurst, N. T. Lucas, C. D. Delfs, R. Stranger, M. G. Humphrey, S. Houbrechts, I. Asselberghs, A. Persoons and D. C. R. Hockless, *Inorg. Chim. Acta*, 2003, **352**, 9-18.
- 9. M. A. Fox, R. L. Roberts, W. M. Khairul, F. Hartl and P. J. Low, *J. Organomet. Chem.*, 2007, **692**, 3277-3290.
- 10. E. M. Long, N. J. Brown, W. Y. Man, M. A. Fox, D. S. Yufit, J. A. K. Howard and P. J. Low, *Inorg. Chim. Acta*, 2012, **380**, 358-371.
- 11. I. R. Whittall, M. G. Humphrey, D. C. R. Hockless, B. W. Skelton and A. H. White, *Organometallics*, 1995, **14**, 3970-3979.
- 12. G. M. Sheldrick, *Acta Crystallogr. A*, 2015, **71**, 3-8.
- 13. L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Acta Crystallogr. A*, 2015, **71**, 59-75.
- 14. G. M. Sheldrick, *Acta Crystallogr. C*, 2015, **71**, 3-8.
- 15. L. J. Barbour, *J. Supramol. Chem.*, 2001, **1**, 189 191.
- 16. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.