Mechanistic Insights of Allylic Oxidation of Aliphatic Compound by Tetraamido

Iron(V) Species: A C-H vs O-H Bond Activation

Monika and Azaj Ansari*

Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India.

Email: ajaz.alam2@gmail.com

	Path	way a			Pathv	vay b	
	B3LYP-D2	B3LYP	wB97XD		B3LYP-D2	B3LYP	wB97XD
⁴ I	5.2	5.5	24.9	⁴ I	5.2	5.5	24.9
²	0	0	0	²	0	0	0
⁴ ts _a -1	71.5	85.8	158.5	⁴ ts _b -1	84.5	108.4	137.4
² ts _a -1	64.9	85.0	120.8	²ts _b -1	60.7	125.7	102.9
⁶ Int _a	55.0	54.3	47.1	⁶ Int	-49.6	-53.3	-60.1
⁴ Int _a	30.9	30.9	55.2	⁴Int	-73.7	-76.6	-51.9
² Int _a	112.9	114.6	112.1	²Int	8.3	6.96	4.8
⁶ ts _a -2 _{hs}	82.0	103.5	124.4	⁶ ts _b -2 _{hs}	-73.6	-14.5	12.5
⁴ ts _a -2 _{hs}	53.7	82.6	59.6	⁴ ts _b -2 _{hs}	-	-	-
⁴ ts _a -2 _{is}	55.6	79.1	83.1	⁴ ts _b -2 _{is}	-	-70.3	-59.9
² ts _a -2 _{is}	68.8	66.0	43.2	² ts _b -2 _{is}	-39.1	-38.0	-
² ts _a -2 _{ls}	64.2	84.9	96.2	2 ts _b -2 _{ls}	-	-3.8	-
۶P	-196.4	-101.3	-228.36	⁶ P	-196.44	-101.32	-228.36
⁴ P	-285.3	-305.7	-316.12	⁴ P	-285.32	-305.79	-316.12
² P	-285.6	-224.9	-221.78	² P	-285.69	-224.91	-221.78

Table S1. B3LYP-D2/B3LYP/wB97XD computed relatives energies of *Pathway a* and *Pathway b*.

Fig. S1. B3LYP-D2 a) optimized structure (bond lengths in Å) of low spin and its b) spin density plot

(c) (d) Fig. S2. a) B3LYP optimized structure (bond lengths in Å) of low spin and its b) spin density plot, c) wB97XD optimized structure of low spin and its d) spin density plot.

		Во	nd lengt	hs (Å)							Bond a	ngle (°)				
	Fe-N1	Fe-N2	Fe-N3	Fe-N4	Fe-O1	01-H1	01-H2	H1-O2	H2-C1	C1-O2	Fe-	Fe-	01-	01-	N1-	N2-
4.											01-H1	01-H2	H1-02	H2-C1	Fe-N3	Fe-N4
4 	1.914	1.914	1.878	1.878	1.664	-	-	-	-	-	-	-	-	-	155.7	155.8
² I	1.898	1.898	1.887	1.886	1.630	-	-	-	-	-	-	-	-	-	152.2	152.1
				1.87 ¹	1.58 ¹											
⁴ts _a -1	1.892	1.882	1.871	1.875	1.752	1.067	-	1.387		1.423	119.0		169.6		153.8	156.9
² ts _a -1	1.894	1.897	1.874	1.872	1.737	1.077	-	1.397		1.435	109.0		169.7		156.9	152.0
⁶ Int _a	1.911	1.919	1.889	1.905	1.906	154.7	-	-	-	-	-	-	-	-	154.7	150.3
⁴ Int _a	1.877	1.877	1.879	1.879	1.803	0.982	-	-	-	-	-	-	-	-	155.0	155.0
² Int _a	1.932	1.834	1.910	1.830	1.760	161.5	-	-	-	-	-	-	-	-	161.5	143.6
⁶ ts _{a-hs}	1.884	1.912	1.875	1.877	2.010	-	1.297		1.327	-	-	115.9	-	173.8	160.4	153.1
⁴ ts _{a-hs}	1.901	1.904	1.887	1.881	1.974	-	1.470		1.226	-	-	129.7	-	170.7	155.6	155.9
⁴ ts ₂ -2;	1.887	1.898	1.883	1.890	1.886	-	1.598		1.174	-	-	130.5	-	166.7	156.2	153.9
² ts 2 :	1 903	1 911	1 883	1 889	1 956	-	1 276		1 335	-	-	132.8	_	174 9	156.9	155.1
$\frac{2}{10} = 2$	1 977	1 979	1 990	1 970	1 9/9	_	1 / 57		1 22/	_	_	121 0	_	172 2	160.2	155.1
t3a-∠is	1.077	1.070	1.880	1.870	1.040	-	1.457		1.224	-	-	131.0	-	1/3.3	100.2	133.7
۶P	1.984	1.984	1.924	1.924	-	-	-	-	-	-	-	-	-	-	159.7	159.7
⁴ P	1.864	1.867	1.868	1.864	-	-	-	-	-	-	-	-	-	-	171.9	171.9
² P	1.851	1.872	1.853	1.865	-	-	-	-	-	-	-	-	-	-	170.9	171.2

Table S2. B3LYP-D2 computed structural parameters of the $[Fe^{V}(TAML)O]^{T}$ species, intermediates transition states and Product of *Pathway a*.

			Bond	lengths	(Å)						Bond a	ngle (°)				
	Fe-N1	Fe-N2	Fe-N3	Fe-N4	Fe-01	01-H1	01-H2	H1-02	H2-C1	C1-O2	Fe- 01-H1	Fe- 01-H2	01- H1-02	01- H2-C1	N1- Fe-N3	N2- Fe-N4
4	1.880	1.880	1.910	1.910	1.665	-	-	-	-	-	-	-	-	-	156.1	156.1
²	1.889	1.889	1.894	1.894	1.629	-	-	-	-	-	-	-	-	-	152.3	152.3
⁴ ts _a -1	1.897	1.902	1.878	1.878	1.720	1.142	-	1.289	-	1.443	117.2	-	174.2	-	154.2	154.4
² ts _a -1	1.872	1.897	1.895	1.881	1.725	1.116	-	1.326	-	1.430	111.4	-	171.9	-	156.0	152.4
⁶ Int _a	1.892	1.908	1.910	1.918	1.910	0.979	-	-	-	-	-	-	-	-	154.4	150.3
⁴ Int _a	1.881	1.881	1.879	1.879	1.806	0.981	-	-	-	-	-	-	-	-	154.7	154.7
² Int _a							-	-	-	-	-	-	-	-		
⁶ ts _{a⁻hs}	1.920	1.882	1.887	1.890	2.020	-	1.277	-	1.358	-	-	126.6	-	174.6	158.9	151.5
⁴ ts _{a-hs}	1.887	1.901	1.904	1.890	1.994	-	1.471	-	1.238	-	-	141.3	-	175.7	154.4	155.5
⁴ ts _a -2 _{is}	1.889	1.895	1.885	1.898	1.911	-	1.549	-	1.200	-	-	141.4	-	172.6	156.3	152.7
² ts _a -2 _{is}	1.891	1.892	1.908	1.909	1.966	-	1.307	-	1.327	-	-	140.7	-	175.0	155.3	154.8
² ts _a -2 _{ls}	1.874	1.877	1.886	1.876	1.867	-	1.432	-	1.248	-	-	141.7	-	173.2	159.8	154.1
⁶ P	1.978	1.978	1.909	1.909	-	-	-	-	-	-	-	-	-	-	166.6	166.6
⁴ P	1.863	1.863	1.870	1.870	-	-	-	-	-	-	-	-	-	-	172.0	172.0
² P	1.858	1.870	1.852	1.861	-	-	-	-	-	-	-	-	-	-	171.3	171.3

Table S3. B3LYP computed structural parameters of the [Fe^v(TAML)O]⁻ species, intermediates, transition states and Product of *Pathway a*.

	Fe-N1	Fe-N2	Fe-N3	Fe-N4	Fe-01	01-H1	01-H2	H1-02	H2-C1	C1-O2	Fe-	Fe-	01-	01-	N1-	N2-
											01-H1	01-H2	H1-O2	H2-C1	Fe-N3	Fe-N4
4	1.876	1.877	1.883	1.882	1.638	-	-	-	-	-	-	-	-	-	153.9	153.9
²	1.868	1.870	1.857	1.858	1.667	-	-	-	-	-	-	-	-	-	152.9	153.2
⁴ ts _a -1	1.860	1.861	1.857	1.870	1.742	1.098	-	1.275	-	1.423	118.7	-	167.1	-	159.0	153.7
² ts _a -1	1.854	1.868	1.871	1.861	1.760	1.139	-	1.203	-	1.439	119.2	-	119.2	-	153.9	154.9
_																
⁶ Int _a	1.875	1.890	1.891	1.899	1.889	0.972	-	-	-	-	-	-	-	-	154.6	150.5
⁴ Int _a	1.867	1.865	1.859	1.859	1.784	0.975	-	-	-	-	-	-	-	-	155.5	155.5
² Int _a	1.903	1.804	1.913	1.810	1.735	0.977	-	-	-	-	-	-	-	-	163.7	1.810
⁶ tshc	1.872	1,880	1.864	1.844	2.017	-	1.241	-	1.371	-	_	116.2	-	172.2	157.8	156.7
4+0	1 004	1 000	1 007	1 001	1 004		1 471		1 220			1/1 2		175 0	157.0	150.7
LS _a -hs	1.904	1.090	1.007	1.901	1.994	-	1.4/1	-	1.250	-	-	141.5	-	175.0	154.4	155.5
⁻ tS _a -2 _{is}	1.885	1.893	1.902	1.8//	1.942	-	1.41/	-	1.245	-	-	129.3	-	1/1.2	155.5	155.5
² ts _a -2 _{is}	1.909	1.891	1.892	1.908	1.966	-	1.307	-	1.327	-	-	140.7	-	175.0	155.4	154.8
² ts _a -2 _{ls}	1.900	1.907	1.874	1.879	1.971	-	1.226	-	1.379	-	-	130.9	-	172.4	156.4	154.9
60	1 050	1 050	1 009	1 009											162.2	162.2
- M 4 -	1.929	T.323	1.908	1.908	-	-	-	-	-	-	-	-	-	-	102.3	102.3
۴P	1.849	1.858	1.858	1.858	-	-	-	-	-	-	-	-	-	-	172.1	172.1
² P	1.831	1.852	1.833	1.863	-	-	-	-	-	-	-	-	-	-	172.0	172.2

Table S4. wB97XD computed structural parameters of the [Fe^v(TAML)O]⁻ species, intermediates, transition states and Product of *Pathway a*.

Bond angle (°)

Bond lengths (Å)

	Fe1	01	H1	H2	02	C1
⁴ I	1.279	0.757	-	-	-	-
2	1.061	0.585	-	-	-	-
⁴ ts _a -1	1.607	0.290	-0.017	-	0.519	-
² ts _a -1	1.690	0.139	0.012	-	-0.447	-
⁶ Int _a	3.202	0.381	0.005	-	-	-
⁴ Int _a	1.788	0.036	0.010	-	-	-
² Int _a	0	0	0	-	-	-
⁶ ts _a -2 _{hs}	3.173	0.216	-	0.109	0.557	0.141
⁴ ts _a -2 _{hs}	3.143	0.201	-	-0.119	-0.698	0.010
⁴ ts _a -2 _{is}	2.319	0.038	-	0.110	0.795	-0.031
² ts _a -2 _{is}	2.468	0.051	-	-0.108	-0.625	-0.095
² ts _a -2 _{ls}	0.513	0.026	-	0.120	0.717	-0.016
⁶ P	3.914	-	-	-	-	-
⁴ P	2.663	-	-	-	-	-
² P	1.187	-	-	-	-	-

Table S5. B3LYP-D2 computed spin density values of the [Fe^v(TAML)O]⁻ species, intermediates, transition states and Product of *Pathway a*.

	Fe1	01	H1	H2	02	C1
⁴ I	1.274	0.766	-	-	-	-
²	1.040	0.580	-	-	-	-
⁴ ts _a -1	1.649	0.251	0.251	-	0.419	-
² ts _a -1	1.653	0.153	0.012	-	-0.382	-
⁶ Int _a	3.206	0.381	0.004	-	-	-
⁴ Int _a	1.804	0.037	0.009	-	-	-
² Int _a	0	0	0	-	-	-
⁶ ts _a -2 _{hs}	3.217	0.195	-	0.195	0.583	0.151
⁴ ts _a -2 _{hs}	3.154	0.197	-	-0.123	-0.688	0.004
⁴ ts _a -2 _{is}	2.358	0.026	-	0.116	0.757	-0.028
² ts _a -2 _{is}	2.450	0.062	-	-0.115	-0.614	-0.077
² ts _a -2 _{ls}	-0.003	-0.050	-	0.166	-0.031	0.084
⁶ P	3.921	-	-	-	-	-
⁴ P	2.664	-	-	-	-	-
² P	1.228	-	-	-	-	-

Table S6. B3LYP computed spin density values of the [Fe^v(TAML)O]⁻ species, intermediates, transition states and product of *Pathway a*.

	Fe1	01	H1	H2	02	C1
⁴ I	2.312	0.645	-	-	-	-
²	1.577	-0.708	-	-	-	-
⁴ ts _a -1	1.500	0.414	-0.033	-	0.496	-
² ts _a -1	1.866	-0.433	0.052	-	-0.531	-
⁶ Int _a	3.273	0.381	0.003	-	-	-
⁴ Int _a	1.804	0.014	0.009	-	-	-
² Int _a	0.805	-0.601	0.393	-	-	-
⁶ ts _a -2 _{hs}	3.211	0.222	-	0.101	0.560	0.178
⁴ ts _a -2 _{hs}	3.154	0.197	-	-0.123	-0.688	0.004
⁴ ts _a -2 _{is}	2.618	0.124	-	0.108	0.714	0.023
² ts _a -2 _{is}	2.451	0.062	-	0.008	-0.614	-0.077
² ts _a -2 _{ls}	2.628	0.067	-	-0.109	-0.584	-0.137
⁶ P	3.996	-	-	-	-	-
⁴ P	2.744	-	-	-	-	-
² P	0.990	-	-	-	-	-

Table S7. wB97XD computed spin density values of the $[Fe^{V}(TAML)O]^{T}$ species and their intermediates and transition states and product of *Pathway a*.

Fig. S3. B3LYP computed energy surface for the formation of cyclohex-2-enone from cyclohex-2-enol *via* O-H bond activation (*pathway a*) by $Fe^{V}=O$ species (ΔG in kJmol⁻¹).

Fig. S4. wB97XD computed energy surface for the formation of cyclohex-2-enone from cyclohex-2-enol *via* O-H bond activation (*pathway a*) by $Fe^{V}=O$ species (ΔG in kJmol⁻¹).

Fig. S5. B3LYP-D2 a) optimized structure (bond length in Å) and b) its spin density plot of the transition state 4 ts_a-1.

Fig. S6. B3LYP a) optimized structure (bond length in Å) and b) its spin density plot of the transition state 2 ts_a-1, c) optimized structure and d) its spin density plot of the transition state 2 ts_a-2_{is}.

Fig. S7. wB97XD a) optimized structure (bond length in Å) and b) its spin density plot of the transition state 2 ts_a-1, c) optimized structure and d) its spin density plot of the transition state 2 ts_a-2_{is}.

Scheme S1. Orbital occupancy diagrams for the H-abstraction of (a) 2 ts_a-1 and (b) 2 ts_b-1.

Scheme S2. Orbital occupancy diagrams for the H-abstraction of (a) ${}^{4}ts_{a}-2_{hs}$ and (b) ${}^{6}ts_{b}-2_{hs}$.

			Bon	d length	s (Å)						Bond	angle (°)			
	Fe-N1	Fe-N2	Fe-N3	Fe-N4	Fe-O1	01-H1	01-H2	H1-02	H2-C1	C1-O2	Fe- 01-H2	Fe- 01-H1	01- H2-C1	01- H1-02	N1- Fe-N3	N2- Fe-N4
								B3LYP-D2	2							
⁴ ts _b -1 ² ts _b -1	1.920 1.877	1.915 1.894	1.890 1.873	1.893 1.892	1.740 1.684	-	1.371 1.470	-	1.199 1.178	1.445 1.441	134.9 116.0	-	174.2 161.3	-	152.3 150.8	153.5 154.1
⁶ ts _{b^{-hs} ²ts_b-2_{is}}	2.027 1.876	2.035 1.879	1.973 1.891	1.963 1.879	1.993 1.844	1.807 2.220	-	1.009 0.983	-	1.343 1.377	-	114.8 103.5	-	116.7 105.6	144.4 155.8	145.0 158.4
⁴ ts _b -1 ² ts _b -1	1.910 1.874	1.901 1.883	1.904 1.883	1.914 1.883	1.777 1.737	-	1.266 1.336	- -	1.257 1.242	1.444 1.442	160.3 117.5	-	160.3 152.3	-	151.6 153.6	152.2 153.0
⁶ tS _b -hs ² tS _b -is ² tS _b -2 _{is} ² tS _b -2 _{ls}	2.035 1.891 1.879 1.880	1.972 1.893 1.891 1.884	1.962 1.898 1.878 1.896	1.972 1.898 1.876 1.886	1.993 2.138 1.843 1.882	1.807 1.554 2.220 2.317	- - -	1.008 1.058 0.982 0.981		1.343 1.342 1.377 1.373	- - -	114.8 120.8 103.5 109.7	- - -	116.7 125.3 105.5 99.0	145.0 160.3 155.7 158.1	144.3 158.1 158.4 154.5
								wB97XD)							
⁴ ts _b -1 ² ts _b -1	1.880 1.874	1.895 1.883	1.893 1.883	1.874 1.894	1.739 1.737	-	1.452 1.336	-	1.162 1.242	1.439 1.442	134.2 117.5	-	174.6 152.3	-	152.2 153.6	154.2 153.0
° ts b⁻hs ²tsb⁻is	2.006 1.876	1.964 1.885	1.952 1.886	1.997 1.879	2.008 2.124	1.770 1.511	-	1.010 1.066	-	1.320 1.329	-	111.5 117.6	-	116.2 125.7	147.0 160.3	145.6 158.7

 Table S8. B3LYP-D2/B3LYP/wB97XD computed structural parameters of the transition states of Pathway b.

-

B3LYP-D2	Fe	01	H1	H2	02	C1
			B3LYP-D2			
⁴ ts _b -1	2.853	0.267		0.008		-0.138
² ts _b -1	1.462	-0.225		0.014		-0.157
⁶ ts _b -2 _{hs}	3.981	0.133	-0.004		0.001	-0.097
² ts _b -2 _{is}	1.386	0.086	-0.006		-0.034	-0.437
			B3LYP			
⁴ ts _b -1	2.998	0.134		0.026		-0.287
² ts _b -1	1.668	-0.374		0.035		-0.311
⁶ ts _b -2 _{hs}	3.980	0.133	-0.004		0.001	-0.097
² ts _b -2 _{is}	2.672	0.059	-0.000		0.012	0.015
² ts _b -2 _{is}	1.386	0.086	-0.006		-0.034	-0.437
² ts _b -2 _{ls}	1.277	0.105	-0.004		-0.037	-0.391
			wB97XD			
⁴ ts _b -1	3.010	0.032		0.000		-0.177
² ts _b -1	1.668	-0.374		0.035		-0.317
⁶ ts _b -2 _{hs}	4.049	0.107	-0.000		0.004	-0.000
² ts _b -2 _{is}	2.734	0.074	0.004		0.006	0.004

Table S9. B3LYP-D2/B3LYP/wB97XD computed spin density values of the transition states of *Pathway b*.

Fig. S8. Computed Eigen-value plot incorporating energies computed for d-based orbitals for alpha and beta spin corresponding to the ground state (${}^{2}ts_{b}-1$) (energies are given in eV).

Fig. S9. B3LYP computed energy surface for the formation of cyclohex-2-enone from cyclohex-2-enol *via* C-H bond activation (*pathway b*) by $Fe^{V}=O$ species (ΔG in kJmol⁻¹).

Fig. S10. wB97XD computed energy surface for the formation of cyclohex-2-enone from cyclohex-2-enol *via* C-H bond activation (*pathway b*) by Fe^V=O species (Δ G in kJmol⁻¹).

Fig. 11. B3LYP-D2 (black), B3LYP (red) and wB97XD (green) computed energy surface for the ground state of the *pathway a* (ΔG in kJmol⁻¹).

Fig. 12. B3LYP-D2 (black), B3LYP (red) and wB97XD (green) computed energy surface for the ground state of the *pathway b* (ΔG in kJmol⁻¹).

Full reference for reference number 27 of the main article

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09 (Revision A.1), Gaussian, Inc., Wallingford, CT, 2009.

Reference

1. F. T. de Oliveira, A. Chanda, D. Banerjee, X. Shan, S. Mondal, L. Que Jr., E. L. Bominaar, E. Munck and T. J. Collins, *Science*, 2007, **315**, 835-838.