Electronic Supplementary Information for

N-(cyano(naphthalen-1-yl)methyl)benzamides: synthesis, crystal structures, and colorimetric sensing for fluoride anion

Eyad A. Younes^{*a}, Nour Hussein^a, Majed Shtaiwi^a, Farshid Shahrokhi^b,

Kayed A. Abu Safieh^a, and Yuming Zhao^{*b}

^aDepartment of Chemistry, the Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan. Tel: +962 (5) 3903333; E-mail: <u>e.younes@hu.edu.jo</u>

^bDepartment of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X7. Fax: 1 709 864 3702; Tel: 1 709 864 8747; Email: <u>yuming@mun.ca</u>

Table of Content

1.	Synthesis of Compound 5	S 2
2.	NMR Spectra of Compounds 7a-c	S 3
3.	Detaild NMR Results for Titrations of Compounds 7a-c with TBAF	S 16
4.	UV-Vis Spectral Data for Compounds 7a-c	S21
5.	Detailed Results of DFT and TD-DFT Calculations	S 30
6.	Mass Spectrometric Analysis of 7c and Fluoride Anion	S37

1. Synthesis of Compound 5

2-Amino-2-(naphthalene-1-yl)acetonitrile) (**5**) was prepared according to the literature procedures¹ with slight modifications. A cooled mixture (at 0 °C) of 1-naphthaldehyde (0.18 g, 1.0 mmol) in ammonium hydroxide (20 mL) and ethanol (20 mL) was stirred for 10 minutes. Sodium cyanide (NaCN) (0.050 g, 1.0 mmol) was added in portions with continuous stirring. Ammonium chloride (0.053 g, 1.0 mmol) was then added to the solution. The flask was securely stoppered, and left under continuous stirring for 24 hours at room temperature. The resulting product was extracted with chloroform (2 ×15 mL). The organic layers were combined and dried over anhydrous MgSO₄. The organic solvent was removed under reduced pressure to give aminonitrile (**5**) as an orange semi-solid in a quantitative yield. The aminonitrile (**5**) was used for the next step without any further purification. ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, *J* = 8.4 Hz, 1H), 7.93 (t, *J* = 7.8 Hz, 2H), 7.83 (d, *J* = 7.1 Hz, 1H), 7.67-7.49 (m, 3H), 5.59(s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 134.09, 131.69, 130.11, 130.01, 129.13, 127.15, 126.37, 125.28, 124.97, 122.84, 121.04, 45.38 ppm.

¹⁾ K. Mai and G. Patil, *Organic Preparations and Procedures International*, 1985, **17**, 183–186.

2. NMR Spectra of Compounds 7a-c

Fig. S-1: ¹H NMR (400 MHz, DMSO- d_6) spectrum of compound **7a**.

Fig. S-2: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 7a.

Fig. S-3: 13 C NMR (100 MHz, DMSO- d_6) spectrum of compound 7a.

Fig. S-4: ¹H NMR (400 MHz, DMSO- d_6) spectrum of compound **7b**.

Fig. S-5: ¹H NMR (400 MHz, CDCl₃) spectrum of compound **7b**.

Fig. S-6:¹³C NMR (100 MHz, CDCl₃) spectrum of compound 7b.

Fig. S-7: ¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of compound **7b**.

Fig. S-8: ¹H NMR (400 MHz, CDCl₃) spectrum of compound **7c**.

Fig. S-9: ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **7c**.

Fig. S-10: ¹H NMR (400 MHz, acetone- d_6) spectrum of compound **7c**.

Fig. S-11: ¹H NMR (400 MHz, acetonitrile- d_3) spectrum of compound **7c**.

Fig. S-12: ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 7c.

Fig. S-13: ¹³C NMR (100 MHz, DMSO- d_6) spectrum of compound **7c**.

3. Detaild NMR Results for Titrations of Compounds 7a-c with TBAF

Fig. S-14: ¹H NMR (400 MHz) spectra monitoring the titration TBAF (0 to 5.2 molar equiv, bottom to top) to **7a** (2.10 x 10^{-2} M) in DMSO-*d*₆. 0.4 molar equiv of TBAF was added in each step.

Fig. S-15: ¹H NMR (400 MHz) spectra monitoring the titration TBAF (0 to 4.4 molar equiv, bottom to top) to **7a** (2.04 x 10^{-2} M) in CDCl₃. 0.4 molar equiv of TBAF was added in each step.

Fig. S-16: ¹H NMR (400 MHz) spectra monitoring the titration TBAF (0 to 4.0 molar equiv, bottom to top) to **7b** (1.40 x 10^{-2} M) in CDCl₃. 0.4 molar equiv of TBAF was added in each step.

Fig. S-17: ¹H NMR (400 MHz) spectra monitoring the titration TBAF (0 to 4.4 molar equiv, bottom to top) to **7b** (1.71 x 10^{-2} M) in DMSO-d6. 0.4 molar equiv of TBAF was added in each step.

9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 Chemical Shift (ppm)

Fig. S-18: ¹H NMR (400 MHz) spectra monitoring the titration TBAF (0 to 4.0 molar equiv, bottom to top) to **7c** (2.21 x 10^{-2} M) in acetonitrile-*d*₃. 0.4 molar equiv of TBAF was added in each step.

Fig. S-19:¹H NMR (400 MHz) spectra monitoring the titration TBAF (0 to 3.6 molar equiv, bottom to top) to **7c** (2.21 x 10^{-2} M) in CDCl₃. 0.4 molar equiv of TBAF was added in each step.

Fig. S-20:Stack plot of ¹H NMR (400 MHz) spectra monitoring the titration of TBAF (3 to 5 molar equiv, bottom to top) to **7c** (2.21×10^{-2} M) in DMSO- d_6 .

Fig. S-21:Stack plot of ¹⁹F NMR (376 MHz) spectra monitoring the titration of TBAF (0 to 8 molar equiv, bottom to top) to **7c** (2.21×10^{-2} M) in DMSO-*d*₆.

4. UV-Vis Spectral Data for Compounds 7a-c

Fig. S-22: Normalized absorption spectra of **7a** $(1.3 \times 10^{-5} \text{ M})$ in DMSO upon addition of 50 molar equivalents of tetrabutylammonium salts of F⁻, Cl⁻, ,Br⁻, I⁻, and ClO₄⁻, respectively.

Fig. S-23: Normalized absorption spectra of **7b** $(1.3 \times 10^{-5} \text{ M})$ in DMSO upon addition of 50 molar equivalents of tetrabutylammonium salts of F⁻, Cl⁻, ,Br⁻, I⁻, and ClO₄⁻, respectively.

Fig. S-24: Normalized absorption spectra of **7c** (1.3 x 10^{-5} M) in DMSO upon addition of upon addition of 50 molar equivalents of tetrabutylammonium salts of F⁻, Cl⁻, ,Br⁻, I⁻, and ClO₄⁻, respectively.

Fig. S-25: Normalized absorption spectra of **7c** $(1.3 \times 10^{-5} \text{ M})$ in CHCl₃ upon addition of upon addition of 50 molar equivalents of tetrabutylammonium salts of F⁻, Cl⁻, ,Br⁻, I⁻, and ClO₄⁻, respectively.

Fig. S-26: UV-Vis absorption spectra monitoring the titration of TBAF (0 to 12 molar equivalents) to **7c** (3.9×10^{-6} M) in CH₃CN.

Fig. S-27: UV-Vis absorption spectra monitoring the titration of TBAF (0 to 12 molar equivalents) to 7c (3.9×10^{-6} M) in CHCl₃.

Fig. S-28: Absorption spectra of **7c** (8.2×10^{-5} M) in DMSO upon addition of a mixture of anions (F^- , Cl^- , Br^- , I^- , and ClO_4^-).

Fig. S-29: UV-Vis absorption spectra of **7c** (6.3×10^{-5} M) in DMSO upon addition 50 molar equivalents of OH⁻ anion (KOH).

Fig. S-30: Photograph of **7c** $(8.2 \times 10^{-5} \text{ M})$ in DMSO upon addition of different molar equivalents of TBAF. Visual LoD is determined to be $1.6 \times 10^{-3} \text{ M}$.

Fig. S-31: Standard calibration curve demonstrating the absorbance increment of **7c** $(8.2 \times 10^{-5} \text{ M})$ at 680 nm as a function of the concentration of fluoride anion in DMSO.

The limit of detection (LoD) of compound **7c** to fluoride anion was determined using the $(3\sigma/m)$ equation. Where σ is defined as the standard deviation of blank samples (number of samples is 20) and m is the slope of the calibration curve. According to the linear plot in Fig. S-31 ($R_2 = 0.9974$, m = 38.93), the (LoD) of **7c** was determined to be 0.177 mM.

5. Detailed Results of DFT and TD-DFT Calculations

Fig. S-32: Optimized structure of compound **7c** viewed from two different perspectives. Calculations done in the gas phase at the B3LYP/6-31+G(d, p) level of theory.

Fig. S-33: Optimized structures of compounds $[7c + F]^-$. Calculations done (a) in the gas phase, (b) in CHCl₃ (c) in CH₃CN, and (d) in DMSO at the B3LYP/6-31+G(d, p) level of theory.

Cartesian coordinates of optimized 7c in DMSO

E(RB3LYP) = -1326.2765 Hartrees; dipole Moment = 7.619254 Debye; basis set = 6-31+G(d, p)

0	0.14947	0.73051	2.34440
0	2.96686	-3.27669	-1.55071
0	4.83817	-2.26715	-2.02258
0	5.69563	2.15374	-0.26636
0	4.19567	3.14488	0.96287
Ν	-2.24852	-2.90219	3.03250
Ν	-0.71116	-0.75983	0.85491
Η	-0.58991	-1.27500	-0.00689
Ν	3.73223	-2.31414	-1.48382
Ν	4.59959	2.19398	0.29341
С	-3.14723	-0.68914	0.41596
С	-3.43252	0.58435	-0.18303
С	-2.75916	1.78947	0.16770
Н	-1.98024	1.78210	0.92231
С	-3.07885	2.98642	-0.44077
Η	-2.55218	3.89172	-0.15426
С	-4.08592	3.04514	-1.43438
Н	-4.32639	3.99354	-1.90498
С	-4.75711	1.89799	-1.79884
Η	-5.53272	1.93164	-2.55911
С	-4.45359	0.64757	-1.19206
С	-5.14635	-0.53734	-1.56734
Η	-5.91659	-0.47333	-2.33097
С	-4.84910	-1.74248	-0.97474
Η	-5.37910	-2.64488	-1.26205
С	-3.84347	-1.81415	0.01981
Η	-3.62719	-2.77534	0.47567
С	-2.04269	-0.78509	1.46524
Η	-2.08407	0.07361	2.14324
С	-2.17383	-1.97972	2.33169
С	0.29611	0.00318	1.35955
С	1.62034	-0.05998	0.64171
С	2.03634	-1.16652	-0.10539
Η	1.42798	-2.05568	-0.21248
С	3.29369	-1.14056	-0.70838
С	4.15552	-0.05567	-0.60305
Η	5.12565	-0.05423	-1.08009
С	3.71224	1.02537	0.15256
С	2.47209	1.04206	0.78273
Η	2.16438	1.89340	1.37577

Cartesian coordinates of optimized 1:1 complex of 7c and fluoride anion in DMSO

E(RB3LYP) = -1426.2945 Hartrees; dipole moment = 7. 11.153395 Debye; basis set = 6-31+G(d, p).

0	0.15631	1.42588	1.90993
0	2.73914	-3.21254	-1.58927
0	4.71631	-2.39144	-1.97778
0	5.98269	1.88205	-0.16349
0	4.55234	3.04001	0.99936
Ν	-2.20919	-1.87967	3.70434
Ν	-0.69338	-0.48502	0.98638
Η	-0.58592	-1.41247	0.42374
Ν	3.58789	-2.32736	-1.48311
Ν	4.87209	2.04495	0.34655
С	-3.15943	-0.38347	0.63929
С	-3.41552	0.69849	-0.26972
С	-2.65076	1.90068	-0.29615
Η	-1.82178	2.03503	0.39003
С	-2.94318	2.91146	-1.18957
Η	-2.34549	3.81823	-1.18881
С	-4.01340	2.77778	-2.10735
Η	-4.23137	3.58066	-2.80516
С	-4.77439	1.62879	-2.10921
Η	-5.59945	1.51588	-2.80749
С	-4.50179	0.56720	-1.20173
С	-5.29014	-0.61729	-1.20088
Η	-6.10871	-0.70276	-1.91037
С	-5.02233	-1.63529	-0.31551
Η	-5.62483	-2.53826	-0.31474
С	-3.95229	-1.51324	0.60448
Η	-3.75954	-2.33124	1.29151
С	-1.99393	-0.26636	1.62256
Η	-1.97514	0.73975	2.05488
С	-2.13474	-1.18077	2.77939
С	0.29488	0.40416	1.21158
С	1.63868	0.14906	0.55635
С	1.95472	-1.00385	-0.17761
Η	1.22045	-1.79759	-0.32989
С	3.23794	-1.11741	-0.71772
С	4.21754	-0.14152	-0.56950
Η	5.20180	-0.25566	-1.00090
С	3.86716	0.98637	0.16378
С	2.60510	1.14664	0.72905
Н	2.36094	2.03227	1.30017
F	-0.51021	-2.66383	-0.25793

Cartesian coordinates of optimized deprotonated 7c in DMSO

E(RB3LYP) = -1325.8028 Hartrees; dipole moment = 8.106137 Debye; basis set = 6-31+G(d, p).

0	0.33677	-2.56141	0.54329
0	2.17288	3.49898	0.50902
0	4.24848	3.34770	-0.12671
0	6.17857	-0.98204	-1.06578
0	4.96934	-2.77870	-0.85365
Ν	-2.78734	-0.20891	3.68218
Ν	-0.59836	-0.47875	1.07126
Ν	3.15842	2.84519	0.16001
Ν	5.12015	-1.55620	-0.79545
С	-2.91599	-1.08259	0.28958
С	-3.42245	0.16401	-0.21199
С	-2.98883	1.43461	0.26661
Η	-2.20885	1.47757	1.01674
С	-3.52172	2.60562	-0.23275
Н	-3.17318	3.56120	0.14839
С	-4.51417	2.57357	-1.24370
Н	-4.92463	3.50229	-1.62913
С	-4.95045	1.36314	-1.73759
Н	-5.70777	1.32692	-2.51651
С	-4.42429	0.13624	-1.24303
С	-4.87559	-1.11334	-1.75297
Н	-5.62966	-1.11862	-2.53560
С	-4.36574	-2.29342	-1.26195
Н	-4.70976	-3.24672	-1.65197
С	-3.38927	-2.27096	-0.23559
Н	-3.00521	-3.21231	0.14721
С	-1.85226	-1.15496	1.39498
Н	-1.67669	-2.22354	1.58794
С	-2.38097	-0.60863	2.66791
С	0.36178	-1.29884	0.67236
С	1.66894	-0.59681	0.33082
С	1.80488	0.79463	0.40319
Н	0.96110	1.39777	0.70891
С	3.02754	1.38315	0.08089
С	4.13838	0.64275	-0.31604
Н	5.07810	1.11551	-0.56261
С	3.97298	-0.73645	-0.37988
С	2.76627	-1.36581	-0.06766
Н	2.66385	-2.44115	-0.12781

No	Wavelength (nm)	5	Symmet ry Major contribs	Minor contribs
~	501.2905552	0.0006	Singlet-AHOMO->LUMO (100%)	
2	461.3880359	0.0003	Singlet-AHOMO->L+1 (100%)	
e	386.7737491	0.0001	Singlet-AH-1->LUMO (100%)	
4	362.7814636	0.0002	Singlet-AH-1->L+1 (100%)	
5	331.65042	0.0011	H-8->LUMO (32%), H-7->L+1 (32%), H-2- Singlet-A>LUMO (18%)	H-7->LUMO (4%), H-3->LUMO (6%)
9	330.2634267	0	Singlet-AH-8->L+1 (37%), H-7->LUMO (46%)	H-8->LUMO (7%), H-7->L+1 (2%)
7	325.640051	0.0073	Singlet-AHOMO->L+2 (93%)	H-2->LUMO (3%)
œ	323.5664518	0.0057	H-8->LUMO (12%), H-7->L+1 (10%), H-2- Singlet-A>LUMO (60%)	H-4->LUMO (2%), H-3->LUMO (7%), HOMO->L+2 (5%)
6	312.3578289	0.0144	Singlet-AH-3->LUMO (83%), H-2->LUMO (13%)	
10	304.8092069	0.0047	Singlet-AH-3->L+1 (14%), H-2->L+1 (74%)	
Ħ	296.5419589	0.0062	H-5->LUMO (29%), H-4->LUMO (14%), H-3- Singlet-A>L+1 (26%), H-2->L+1 (11%)	H-6->L+1 (9%)
12	293.3981566	0.1513	Singlet-AHOMO->L+3 (94%)	H-1->L+4 (3%)
13	291.1178779	0.0097	H-5->LUMO (16%), H-4->LUMO (13%), H-3- Singlet-A>L+1 (40%)	H-14->L+1 (2%), H-10->LUMO (6%), H-6->L+1 (7%), H-2->L+1 (9%)
14	285.6449557	0.0031	H-14->L+1 (12%), H-10->LUMO (34%), H-10- Singlet-A>L+1 (14%), H-3->L+1 (11%)	H-15->L+1 (6%), H-14->LUMO (4%), H-11->LUMO (4%), H-8->L+1 (2%)
15	283.7881229	0.0033	H-15->LUMO (10%), H-14->LUMO (19%), H-10- Singlet-A>L+1 (24%)	H-15->L+1 (2%), H-14->L+1 (4%), H-11->L+1 (4%), H-10->LUMO (7%), H-7->L+1 (2%), H-5->L+1 (2%), H-4->LUMO (9%), H-3->L+1 (5%)
16	282.0258246	0.0019	Singlet-AH-1->L+3 (47%), HOMO->L+4 (44%)	H-1->L+2 (8%)
17	277.8855437	0.0022	Singlet-AH-5->LUMO (30%), H-4->LUMO (53%)	H-10->L+1 (3%), H-6->L+1 (2%), H-2->LUMO (3%)
18	271.9488342	0.0112	Singlet-AH-5->L+1 (35%), H-4->L+1 (43%)	H-6->LUMO (7%), H-3->L+2 (3%), H-2->L+2 (2%), H-1->L+2 (3%)
19	270.8793625	0.0091	Singlet-AH-1->L+2 (88%)	H-1->L+3 (5%), HOMO->L+4 (2%)
20	265.5362653	0.1174	H-6->LUMO (38%), H-5->L+1 (10%), H-4->L+1 Singlet-A(36%)	H-6->L+1 (5%), H-5->LUMO (4%)

Table S-1: TD-DFT calculated electronic transitions, oscillator strength (f), and MO composition for compound **7c** in DMSO

No.	Wavelength (nm)	ſ	Symmetry	Major contribs	Minor contribs
1	489.0509349	0.0002	Singlet-A	HOMO->LUMO (99%)	
2	461.5597983	0.0005	Singlet-A	HOMO->L+1 (99%)	
3	378.196605	0.0024	Singlet-A	H-1 ->LUMO (92%)	H-2->LUMO (7%)
4	361.5226506	0.0085	Singlet-A	H-2->LUMO (88%)	H-3->LUMO (2%), H-1->LUMO (7%)
5	361.1330334	0.0005	Singlet-A	H-1->L+1 (97%)	
9	350.3466982	0.0029	Singlet-A	H-3->LUMO (91%)	H-2->LUMO (2%)
7	341.7613788	0.0026	Singlet-A	H-2->L+1 (91%)	H-3->L+1 (3%)
8	334.5228206	0	Singlet-A	H-10->LUMO (15%6), H-10->L+1 (15%6), H-3->L+1 (48%6)	H-11->LUMO (2%), H-11->L+1 (8%), H-3->LUMO (2%), H-2->L+1 (5%)
6	328.4523498	0.0002	Singlet-A	H-11->LUMO (55%), H-11->L+1 (14%), H-10->L+1 (23%)	H-3->LUMO (3%)
10	325.3580524	0.0006	Singlet-A	H-10≻LUMO (21%), H-10≻L+1 (18%), H-3-≻L+1 (44%)	H-11->LUMO (3%), H-11->L+1 (9%)
=	314.249995	0.023	Singlet-A	HOMO->L+2 (96%)	
12	311.377249	0	Singlet-A	H-5->LUMO (77%), H-5->L+1 (19%)	H-4->LUMO (2%)
13	309.0410853	0.0094	Singlet-A	H-7->LUMO (27%), H-6->LUMO (14%), H-4->LUMO (37%)	H-9->L+1 (6%), H-8->L+1 (2%), H-6->L+1 (3%), H-4->L+1 (4%)
14	305.7789553	0.0026	Singlet-A	H-7->LUMO (17%), H-6->LUMO (19%), H.4->LUMO (38%)	H-9->L+1 (5%6), H-8->LUMO (6%6), H-6->L+1 (3%6), H-4->L+1 (7%6)
15	297.6882831	0.0318	Singlet-A	H-7->LUMO (37%), H-6->LUMO (42%), H-6->L+1 (10%)	H-9->L+1 (3%), H-4->L+1 (3%)
16	293.8222931	0.0021	Singlet-A	H-5->LUMO (12%), H-5->L+1 (52%), H-4->L+1 (27%)	H-+>LUMO (4%)
17	293.1692157	0.0025	Singlet-A	H-5->L+1 (26%), H-4->LUMO (10%), H-4->L+1 (43%)	H-8->L+1 (4%), H-5->LUMO (8%)
18	292.2156851	0.1391	Singlet-A	HOMO->L+3 (91%)	H-1->L+4 (3%)
19	288.120917	0.0062	Singlet-A	H-7->L+1 (25%), H-6->L+1 (51%)	H-17->L+1 (3%), H-13->LUMO (4%), H-6->LUMO (9%)
20	284.4913908	0.0006	Singlet-A	H-17.≫LUMO (26%), H-17.≫L+1 (10%), H-13.≫LUMO (26%),	H-18->LUMO (2%6), H-10->LUMO (3%6), H-7->L+1 (4%6)
				H-13->L+1 (16%)	

Table S-2: TD-DFT calculated electronic transitions, oscillator strength (f), and MO composition for 1:1 complex of **7c** and fluoride anion in DMSO

Minor contribs	H-1->LUMO (8%)	H-1->L+1 (6%)	H-1->F+1 (3%), HOMO->LUMO (8%)		H-1->LUMO (3%), HOMO->L+1 (6%)		H-4->LUMO (8%), H-3->L+1 (3%)		H-4->L+1 (3%), H-3->LUMO (9%)	H-9->L+1 (3%), H-8->LUMO (3%), H-3->L+1 (2%)	H-9->L+1 (8%)	H:4->L+1 (5%)	H-7->L+1 (5%), H-1->L+2 (5%)	H-7->L+1 (5%), H-1->L+2 (7%)	H-6->L+1 (2%)	H-2->L+2 (4%6), HOMO->L+2 (2%6)	H-2->L+2 (3%), H-1->L+3 (4%), HOMO->L+2 (2%), HOMO- >L+3 (7%)	H-3->L+4 (2%), H-2->L+2 (3%), HOMO->L+2 (7%)	H-6->L+1 (4%), H-5->LUMO (4%), H-1->L+3 (3%)	H-6->LUMO (3%), H-2->L+2 (3%), H-1->L+2 (3%), HOMO- >L+3 (3%)	
Major contribs	HOMO->LUMO (91%)	HOMO->L+1 (94%)	H-1->LUMO (87%)	H-2->LUMO (98%)	H-1->L+1 (90%)	H-2->L+1 (99%)	H-3->LUMO (89%)	H-4->LUMO (60%), H-3->L+1 (37%)	H-4->LUMO (29%), H-3->L+1 (58%)	H-4->L+1 (89%)	H-9->LUMO (31%), H-8->LUMO (19%), H-8->L+1 (37%)	H-9->LUMO (14%), H-9->L+1 (35%), H-8->LUMO (30%), H-8- >L+1 (12%)	H-5->LUMO (45%), HOMO->L+2 (41%)	H-5->LUMO (39%), HOMO->L+2 (46%)	H-5->L+1 (81%), HOMO->L+3 (12%)	H-5->L+1 (13%), H-2->L+3 (18%), H-1->L+2 (15%), HOMO->L+3 (44%)	H-2->L+3 (68%), H-1->L+2 (11%)	H-1->L+2 (50%), HOMO->L+3 (30%)	H-6->LUMO (86%)	H-1⇒L+3 (81%)	
Symmetry	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	Singlet-A	
f	0.0277	0.0062	0.0007	0	0.0001	0	0.0002	0.0002	0.0002	0.0001	0.0001	0	0.0327	0.0355	0.0122	0.1401	0.0726	0.0528	0.0019	0.0068	
Wavelength (nm)	566.6812606	525.2232187	498.7296581	480.9690163	471.100361	444.0217491	379.4698773	364.3165051	363.1746478	344.3048959	329.0800324	327.8097219	323.1532124	322.0954278	308.4797796	302.1278188	297.9386577	292.1812533	289.0343925	286.0667567	
No.	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	

Table S-3: TD-DFT calculated electronic transitions, oscillator strength (f), and MO composition for deprotonated **7c** in DMSO

6. Mass Spectrometric Analysis of 7c and Fluoride Anion

Fig. S-34: High-resolution mass spectrum (APPI-TOF, negative mode) of the mixture of **7c** and TBAF. Sample was prepared by mixing **7c** and TBAF (1:1 molar ratio) in acetone. The peak at m/z 375.0734 matches the $[M - H]^-$ ion, while the peak at m/z 431.0995 matches the $[M + F + (H_2O)_2]^-$ ion.