Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Molecular engineering of pyrene carbazole dyes with a single bond and double bond as the mode of linkage

Divya Unny^{1#}, Ganapathi Rao Kandregula^{1#}, Jagadeeswari Sivanadanam^{1,2*} and Kothandaraman Ramanujam^{1,2*}

¹Department of Chemistry, Indian Institute of Technology Madras, Chennai, India, 600 036

²DST-IITM Solar Energy Harnessing Centre, Indian Institute of Technology Madras, Chennai, India, 600 036

Contributed equally

*Corresponding author's email: <u>rkraman@iitm.ac.in; jagadhi333@gmail.com</u>

List of content:

- 1. Scheme S1 Synthetic route of intermediate (3) and (6) and reference dye (PC0).
- 2. **Fig. S1**¹ H, ¹³C and Mass spectrum of intermediate (2).
- 3. **Fig. S2**¹ H, ¹³C and Mass spectrum of intermediate (3).
- 4. **Fig. S3**¹ H, ¹³C and Mass spectrum of intermediate (8).
- 5. **Fig. S4**¹ H, ¹³C and Mass spectrum of intermediate (9).
- 6. **Fig. S5**¹ H, ¹³C and Mass spectrum of PC1 dye.
- 7. **Fig. S6**¹ H, ¹³C and Mass spectrum of PC2 dye.
- Fig. S7 Thickness of mesoporous TiO₂ coated on FTO plate measured using Nanomap Profilometer.
- 9. Fig. S8 J-V characteristics of devices sensitized with different solvents with and without CDCA PC0 (a, b) PC1 (c, d) PC2 (e, f) under one sun illumination (100 mWcm⁻²).
- 10. **Table S1** HOMO, LUMO, calculated using B3LYP, CAM-B3LYP, M06, M06-2X, PBE1PBE, WB97XD/6-31G(d,p) method.
- 11. **Table S2** The projected density of states (PDOS) analysis of three dyes obtained using the B3LYP/6-31G(d,p) method.
- 12. Table S3 Optimization of solvents for PC0 dye.
- 13. Table S4 Optimization of solvents for PC1 dye.
- 14. Table S5 Optimization of solvents for PC2 dye.

Scheme S1 Synthetic route of intermediate (3) and (6) and reference dye (PC0).

Fig. S1¹ H, ¹³C and Mass spectrum of intermediate (2).

ECT	Mace	Da	
E 31	Mass	ĸe	DOF

ESI Mass Report			
Name	241019-22-KRR-PY-ALD	Data File Path	
Sample ID		Acq. Time (Local)	
Instrument	Instrument 1	Method Path (Acq)	
MS Type	QTOF	Version (Acq SW)	
[nj. Vol. (ul)	5	IRM Status	
Position	P1-B11	Method Path (DA)	
Plate Pos.		Target Source Path	
Operator		Result Summary	

D:\MassHunter\Data\2019\OCT-2019\KRR\PY-ALD.d 24-10-2019 12:16:01 (UTC+05:30) D:\MassHunter\Methods\Direct Infusion_HPLC.m 6200 series TOF/6500 series Q-TOF B.08.00 (B8058.0) Success D:\MassHunter\Methods\10.0\IIT-Target Screening_1.m

1 qualified (1 targets)

Compound Details

Cpd. 1: C17 H10 O

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 Counts vs. Mass-to-Charge (m/z)

Compound ID Table								
Cpd	Formula	Mass (Tgt)	Calc. Mass	Mass	Species	Diff(Tgt.ppm)	mDa	
1	C17 H10 O	230.0732	230.0730	231.0803 248.1059 253.0619	(M+H)+ (M+NH4)+ (M+Na)+	-0.74	-0.17	

Compound Details

Cpd. 1: C18 H12

Compound ID Table								
Cpd	Formula	Mass (Tgt)	Calc. Mass	Mass	Species	Diff(Tgt.ppm)	mDa	
1	C18 H12	228.0939	228.0930	229.0997 246 1300	(M+H)+ (M+NH4)+	-3.97	-0.91	

Fig. S3¹ H, ¹³C and Mass spectrum of intermediate (8).

Compound Details

Cpd. 1: C37 H33 N O

Compound ID Table								
Cpd	Formula	Mass (Tgt)	Calc. Mass	Mass	Species	Diff(Tgt.ppm)	mDa	
1	C37 H33 N O	507.2562	507.2573	508.2641 525.2887 530.2463	(M+H)+ (M+NH4)+ (M+Na)+	2.17	1.10	

Fig. S4¹ H, ¹³C and Mass spectrum of intermediate (9).

ESI Mass Report

Name	160919-4-KRR-Du-PY-VI-AL
Sample ID	
Instrument	Instrument 1
MS Type	QTOF
Inj. Vol. (ul)	5
Position	P2-D4
Plate Pos.	
Operator	

Data File Path Acq. Time (Local) Method Path (Acq) Version (Acq SW) IRM Status Method Path (DA) Target Source Path Result Summary D:\MassHunter\Data\2019\SEP-2019\KRR\Du-PY-VI-AL.d 16-09-2019 09:20:01 (UTC+05:30) D:\MassHunter\Methods\Direct Infusion_HPLC.m 6200 series TOF/6500 series Q-TOF B.08.00 (B80580) Success D:\MassHunter\Methods\10.0\IIT-Target Screening_1.m

1 qualified (1 targets)

Compound Details

Cpd. 1: C39 H35 N O

Compound ID Table								
Cpd	Formula	Mass (Tgt)	Calc. Mass	Mass	Species	Diff(Tgt.ppm)	mDa	
1	C39 H35 N O	533.2719	533.2692	534.2768 551.3028	(M+H)+ (M+NH4)+	-4.92	-2.62	

Fig. S5¹ H, ¹³C and Mass spectrum of PC1 dye.

ESI Mass Report

Competence of the provement of the control of th	
Name	10122019-16-KRR-PY-CBZ-AC
Sample ID	
Instrument	Instrument 1
MS Type	QTOF
Inj. Vol. (ul)	2
Position	P1-B5
Plate Pos.	
Operator	

Data File Path Acq. Time (Local) Method Path (Acq) Version (Acq SW) IRM Status Method Path (DA) Target Source Path Result Summary D:\MassHunter\Data\2019\NOV-2019\KRR\PY-CBZ-AC.d 11-12-2019 10:32:42 (UTC+05:30) D:\MassHunter\Methods\Direct Infusion_HPLC-NEW.m 6200 series TOF/6500 series Q-TOF B.08.00 (B8058.0) All ions missed D:\MassHunter\Methods\10.0\Default.m

1 qualified (1 targets)

Compound Details

Cpd. 1: C40 H34 N2 O2

Counts vs.	Mass-to-Charge	(m/z)

Compound ID Table								
Cpd	Formula	Mass (Tgt)	Calc. Mass	Mass	Species	Diff(Tgt.ppm)	mDa	
1	C40 H34 N2 O2	574.2620	574.2592	575.2648 592.2929 597.2484	(M+H)+ (M+NH4)+ (M+Na)+	-4.91	-2.82	

Fig. S6¹ H, ¹³C and Mass spectrum of PC2 dye.

ESI Mass Report

Name	031019-23-KRR-Py-D
Sample ID	
Instrument	Instrument 1
MS Type	QTOF
Inj. Vol. (ul)	5
Position	P1-C1
Plate Pos.	
Operator	

Data File Path Acq. Time (Local) Method Path (Acq) Version (Acq SW) IRM Status Method Path (DA) Target Source Path Result Summary D:\MassHunter\Data\2019\OCT-2019\KRR\Py-D.d 03-10-2019 11:51:90 (UTC+05:30) D:\MassHunter\Methods\Direct Infusion_HPLC.m 6200 series TOF/6500 series Q-TOF B.08.00 (B8058.0) Success D:\MassHunter\Methods\10.0\IIT-Target Screening_1.m

1 qualified (1 targets)

Compound Details

Cpd. 1: C42 H36 N2 O2

Counts vs. Mass-to-Charge (m/z)

Compound ID Table									
Cpd	Formula	Mass (Tgt)	Calc. Mass	Mass	Species	Diff(Tgt.ppm)	mDa		
1	C42 H36 N2 O2	600.2777	600.2825	601.2912 618.3135 623.2713	(M+H)+ (M+NH4)+ (M+Na)+	8.00	4.80		

Fig. S7 Thickness of mesoporous TiO_2 coated on FTO plate measured using Nanomap Profilometer.

40.0 80.0 120 160 200 240 280 320 [µm]

-8

Fig. S8 *J-V* characteristics of devices sensitized with different solvents in without and with CDCA PC0 (a, b) PC1 (c, d) PC2 (e, f) under one sun illumination (100 mWcm⁻²).

Table S1 HOMO, LUMO, calculated using B3LYP, CAM-B3LYP, M06, M06-2X, PBE1PBE, WB97XD/ 6-31G(d,p) method.

	B3LYP		CAM-I	B3LYP	M06		M062X		PBE1PBE		WB97XD	
Name of the Dye	E _{HOMO} (eV)	E _{LUMO} (eV)										
PC0	-5.67	-2.65	-6.82	-1.39	-5.93	-2.51	-6.83	-1.76	-5.93	-2.58	-7.42	-0.86
PC1	-5.32	-2.22	-6.51	-1.14	-5.59	-2.21	-6.5	-1.49	-5.59	-2.27	-7.12	-0.64
PC2	-5.12	-2.37	-6.3	-1.17	-5.39	-2.24	-6.32	-1.53	-5.8	-2.3	-6.9	-0.68

Table S2 The projected density of states (PDOS) analysis of three dyes obtained using the B3LYP/6-31G(d,p) method.

Dye	MO	Acceptor	Linker	Donor
DCO	LUMO	56	NA	44
rcu	HOMO	8	NA	92
DC1	LUMO	65	NA	35
PCI	НОМО	1	NA	99
DCO	LUMO	62	2	36
rc2	HOMO	1	15	84

Table S3 Optimization of solvents for **PC0** dye.

Solvents for	Voc (V)	J_{SC} (mA cm ⁻²)	FF	η(%)
PC0 dye	without/	without/	without/	without/
	with CDCA	with CDCA	with CDCA	with CDCA
TACN	0.71/0.74	7.40/7.39	0.70/0.73	3.70/3.99
ACN	0.73/0.72	5.73/7.02	0.59/0.72	2.47/3.64
ACE	0.71/0.72	6.33/5.40	0.60/0.72	2.70/2.79
DCM	0.70/0.72	7.97/7.07	0.59/0.68	3.33/3.46
CHCl ₃	0.73/0.70	7.30/6.22	0.64/0.72	3.41/3.13
EtOAc	0.71/0.72	4.28/6.32	0.56/0.73	1.68/3.32
C ₆ H ₅ Cl	0.73/0.75	7.33/6.52	0.68/0.69	3.64/3.37

Table S4 Optimization of solvents for **PC1** dye.

Solvents for	<i>V_{oc} (V)</i>	J_{SC} (mA cm ⁻²)	FF	η (%)
PC1 dye	without/ with CDCA	without/ with CDCA	without/ with CDCA	without/ with CDCA
TACN	0.80/ 0.79	8.07/ 8.08	0.76/ 0.68	4.90/ 4.34
ACN	0.80/0.81	7.78/5.48)	0.74/0.74	4.60/3.27
ACE	0.73/0.75	6.12/4.64	0.69/0.72	3.08/2.50
DCM	0.79/0.64	7.27/1.0	0.75/0.57	4.32/0.36
CHCl ₃	0.78/0.76	7.59/4.47	0.67/0.75	3.97/2.55
EtOAc	0.71/0.72	4.32/4.40	0.59/0.66	1.80/2.09
C ₆ H ₅ Cl	0.80/0.75	7.29/3.79	0.74/0.73	4.34/2.07

Table S5 Optimization of solvents for **PC2** dye.

Solvents for PC2 dye	Voc (V) without/ with CDCA	J _{SC} (mA cm ⁻²) without/ with CDCA	FF without/ with CDCA	η (%) without/ with CDCA
TACN	0.81/0.80	11.57/11.59	0.60/0.68	5.57/6.30
ACN	0.75/0.79	7.95/9.49	0.62/0.69	3.69/5.17
ACE	0.75/0.74	7.61/8.28	0.66/0.67	3.77/4.10
DCM	0.77/0.76	7.24/8.13	0.68/0.69	3.79/4.27
CHCl ₃	0.71/0.72	6.15/8.42	0.65/0.70	2.84/4.12
EtOAc	0.75/0.73	6.82/8.56	0.69/0.65	3.53/4.06
C ₆ H ₅ Cl	0.75/0.74	7.38/8.12	0.64/0.67	3.54/4.03