Millimeter Bi₂S₃@polyacrylonitrile hybrid beads for high

efficient iodine capture

Qiang Yu^a, Xiaohui Jiang^{a,*}, Zhengjun Cheng^a, Yunwen Liao^a, Qiang Pu^b, Ming Duan^{c,*}

^aChemical Synthesis and Pollution Control Key Laboratory of Sichuan Province,

China West Normal University, Nanchong, Sichuan, PR China 637009.

^bChina Petroleum Engineering Co.,Ltd Southwest Company, Chengdu, Sichuan, PR

China 610213.

^cState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, PR China 610500.

* Corresponding author Email: jxh2314508@163.com; mduan@126.com.

Determination of I₂ Concentration in cyclohexane

I₂ sample with different concentrations (10, 50, 100, 150, 200, 250 and 300 mg/L, respectively). I₂ concentrations were measured by ultraviolet spectrometer at 523 nm. The standard linear calibration curves were prepared to match closely the composition of the analyzed solutions and the linearity was ensured by Beer-Lambert law.

Fig. S1. (a) The absorbance of standard I_2 solutions with different concentrations. (b) The linear relationship between absorbance (A) and I_2 concentrations.

The relationship between absorbance (A) at 523 nm and I_2 standard concentration was drawn in Fig. S1(a). The calibration curve for A value against I_2 concentration was linear in the range from 10 to 300 mg/L and fitted the linear equation A = 0.001 + 0.00384 C_e (where C_e is the concentration of I_2 , mg/L; R²=0.999) (Fig. S1b). Therefore, the residual I_2 concentration was calculated according to the standard curve in the further experiments.

Fig. S2. (a)Full survey XPS spectra, (b) Bi 4f and S 2p of Bi₂S₃.

Fig. S3. Digital photographs of (a) $Bi_2S_3@PAN-30\%$, (b) $Bi_2S_3@PAN-50\%$, (c) $Bi_2S_3@PAN-70\%$.

Fig. S4. (a) Digital photograph, (b) SEM image, (c) EDS of pure PAN beads.

Fig. S5. EDS elemental distribution mapping images of Bi₂S₃@PAN.

Fig. S6. (a) SEM image, (b) EDS of Bi_2S_3 -I₂.