Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information (ESI) for

Quinolone-based fluorescent probe for distinguishing detection of Cys and GSH through different fluorescence channels

Ying-Long Fu, Xiang-Gen Chen, Hao Li, Wei Feng and Qin-Hua Song*

Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China

E-mail address: qhsong@ustc.edu.cn

Contents:

1. Summary of coumarin-based fluorescent probes for biothiols	S2-4
2. Spectral response of QB-1 and QB-2 toward thiols	S5
3. Spectral response of QB-3 toward NAC	S6
4. Evidence of the sensing products for QB-3 with Cys/Hcy/GSH	S6-7
5. The selectivity of QB-3 for ions	S7
6. Competitive reaction between two biothiols (Cys/GSH) with QB-3	S8
7. pH effects and cytotoxicity	S8
8. Copies of NMR spectra for compounds	

Probes	Testing conditions	Absorption for probes λ _{max} /nm	Distinguishin g detection	Emission wavelength /nm	Response time /min	LOD /µM	References
	PBS buffer (10 mM, pH 7.4, containing 1 Mm CTAB	535	Cys GSH	420 512	60 60	/ 0.05	J. Am. Chem. Soc. 2014, 136, 574-577
CI CHO CHO	PBS buffer solution (pH 7.4)	457	Cys Hcy GSH	470 470 546	34 60 40	0.18 0.09 0.08	Anal. Chim. Acta 2015, 900, 103-110
	DMSO/PBS buffer (V/V: 1/1, 10 mM, pH 7.4)	448	GSH	505	7	0.30	Sens. Actuators, B 2017, 253, 42-49
	PBS (pH 7.4, 10 mM, containing 30% acetonitrile	538	Cys GSH	500 560	60 60	0.19 0.43	Biosens. Bioelectron. 2017, 90, 117-124
CI CHO CHO	PBS (pH 7.4, 10 mM, containing 20% DMSO	500	Cys Hcy	480 542	60 60	1.99 0.61	Chem. Asian J. 2017, 12, 2098-2103

Table S1. Summary of coumarin-based fluorescent probes for biothiols

DMSO/PBS (pH 7.4, 10 mM, v/v, 6/4)	500	Cys Hcy GSH	457 559 529	4 15 5	0.0005 0.0036 0.0069	Angew. Chem. Int. Ed. 2018, 57, 4991-4994
PBS (pH 7.4, 10 mM, containing 1% DMSO	614	Cys Hcy GSH	475 475 575	25 55 50	0.014 0.081 0.097	New J. Chem., 2018, 42, 12615-12620
DMSO-PBS (pH 7.4, 10 mM, v/v, 4/6).	527	Cys Hcy GSH	503 467 568	15 15 15	0.0002 0.0007 0.001	Angew. Chem. Int. Ed. 2019, 58, 4557-4561
PBS (pH 7.4, 10 mM)/CH ₃ OH = 1600/400 (v/v)	578	Cys Hcy GSH	489,564,600 489,564,600 489,564,600	60 90 80	2.965 6.140 6.847	Anal. Chem. 2019, 91, 1472-1478
Phosphate-buffered saline (pH 7.4, 10 mM).	586	Cys Hcy GSH	498,573,612 498,573,612 498,573,612	60 90 70	2.2 2.08 1.89	J. Mater. Chem. B, 2019, 7, 7723-7728
10 M PBS buffer pH 7.4, 40% CH3CN	573	Cys GSH	420 537	25 40	0.17 0.46	This work

"/" No available data.

2. Spectral response of QB-1 and QB-2 toward thiols

Figure S1. Time-dependent absorption spectra (a-c) and fluorescence spectra (d-f) of QB-1 (10 μ M) in the presence of 20 equiv of Cys (a, d), Hcy (b, e) and GSH (c, f) in PBS–CH₃CN (v/v, 3:2, 10 mM, pH 7.4), excited at 405 nm.

Figure S2. Time-dependent absorption spectra (a-c) and fluorescence spectra (d-f) of QB-2 (10 μ M) in the presence of 20 equiv of Cys (a, d), Hcy (b, e) and GSH (c, f) in PBS–CH₃CN (v/v, 3:2, 10 mM, pH 7.4), excited at 430 nm.

3. Spectral response of QB-3 toward NAC

Figure S3. (a) Time-dependent absorption spectra of QB-3 (10 μ M) in the presence of 20 equiv of NAC PBS-CH₃CN (v/v, 3:2, 10 mM, pH 7.4) and (b) time-dependent absorbance at 573 nm wavelength.

Figure S4. (a) Time-dependent fluorescence spectra of QB-3 (10 μ M) in the presence of 20 equiv NAC PBS-CH₃CN (v/v, 3:2, 10 mM, pH 7.4), excited at 365 nm and (b) 495 nm.

4. Evidence of the sensing products for QB-3 with Cys/Hcy/GSH

Figure. S5 Partial ¹H NMR spectra comparison of (a) QB-3, (b) QB-3+Cys and (c) QB-3+GSH. The ¹H NMR spectra of (a) QB-3 was obtained in DMSO- d_6 . The ¹H NMR spectra of (b) QB-3+Cys and (c) QB-3+GSH were obtained in DMSO- d_6 -D₂O (3:1, v/v).

Figure S6. High-resolution mass spectrum (HRMS) for the mixture of QB-3 with (a) Cys, (b) Hcy and (c) GSH.

Figure S7. Fluorescence spectra of 10 μ M QB-3 solutions (PBS-CH₃CN v/v, 3:2, 10 mM, pH 7.4) in the presence of 25 equiv of various ions with excitation at (a) 365 nm, (b) 495 nm, including: Zn²⁺, Mg²⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺, Hg²⁺, Al³⁺, K⁺, Ba²⁺, I⁻, Br⁻, Cl⁻, SO₄²⁻, HCO₃⁻, HPO₄²⁻, H₂PO₄⁻, ClO⁻, CH₃COO⁻, NO₃⁻.

6. Competitive reaction between two biothiols (Cys/GSH) with QB-3

Figure S8. UV/Vis absorption spectra (a) and fluorescence spectra (b, c) of QB-3 (10 μ M) after additions of two ratio of biothiols (Cys/GSH, μ M/ μ M) of 100:0, 50:50, 33:66, 1:100 and 100:0 for 50 min in PBS/CH₃CN (v/v, 3:2, 10 mM, pH 7.4), excited at 365 nm (b) and 495 nm (c).

7. pH effects and cytotoxicity

Figure S9. Fluorescence intensities of 10 μ M QB-3 and its reaction mixture with 200 μ M Cys (a) and GSH (b) in PBS buffer solutions (pH 2–11).

Figure S10. MTT assay of HepG2 cells in the presence of different concentrations of QB-3 incubated for 24 h.

8. Copies of NMR spectra for compounds

¹H NMR of **2** in CDCl₃, 400 MHz

¹H NMR of **3** in DMSO-*d*₆, 400 MHz

¹H NMR of QB-1 in CDCl₃, 400 MHz

¹H NMR of QB-3 in DMSO-*d*₆, 400 MHz

