Electronic Supplementary Information for-

Charge transport in phenazine–fused triphenylene discotic mesogens doped with CdS nanowires †

Asmita Shah,^a Benoît Duponchel,^b Ashwathanarayana Gowda^{,c} Sandeep Kumar,^{*c,d} Matthieu Becuwe,^{e,f,g} Carine Davoisne, ^{e,f,g} Christian Legrand,^a Redouane Douali,^a and Dharmendra Pratap Singh^{*a}

Synthesis of phenazine-fused triphenylene discotic liquid crystal

The synthesis of extended triphenylene fused mesogenic derivative as shown in Scheme 1.

Scheme 1. (i) FeCl₃, CH₂Cl₂, r.t, 30 min; (ii) catechol boron bromide, CH₂Cl₂, r.t, 24 h; (iii) CAN, CH₃CN, r.t, 30 min; (iv) CH₃COOH: toluene (7:3), reflux, 6 h; (v) alkanethiol, Cs₂CO₃, DMAC, reflux, 24 h; (vi) *p*-TosCl, pyridine, r.t, 24 h; (vii) Br₂, NaOAc, acetic acid, 110 °C, 3 h; (viii) Con. H₂SO₄, 110 °C, 15 min.

General procedure for the synthesis of final compound

The monohydroxytriphenylene **3** was synthesised by following reported procedure **[1]**. Oxidation of the 2-hydroxy-3,6,7,10,11-pentakis(alkyloxy) triphenylene **3** with ceric ammonium nitrate (CAN) gives 3,6,7,10,11-pentakis(alkyloxy)triphenylene-1,2-diones **4 [2]**. The intermediate 4,5-dibromobenzene-1,2-diamine **10** compound was synthesized following a reported procedure **[3]** and it was condensed with triphenylene-1,2-diquinone **4** in presence of glacial acetic acid in toluene (7:3) under reflux condition to afford intermediate 9,10-dibromo-2,3,6,14,15-pentaalkoxyphenanthro **[9, 10-a]**phenazine compounds **(5)**. Further, reaction of 1-butanethiol with intermediate mesogenic compound **5** in presence of cesium carbonate under reflux condition produces the desired extended phenazine based triphenylene mesogenic derivative **(6)**. All the intermediates and final compounds were purified by column chromatography, followed by recrystallization with appropriate solvent and well characterized using spectral and elemental analysis.

Reference

[1] S. Kumar, M. Manickam, Synthesis. 1998, 1119–1122.

[2] S. Kumar, M. Manickam, S. K. Varshney, D. S. S. Rao, S. K. Prasad, J. Mater. Chem. 2000, 10, 2483–2489

[3] J. Shao, J. Chang, C. Chi, Org. Biomol. Chem. 2012, 10, 7045–7052.

Figure S1. 3D crystal structure of CdS. It has been obtained using the refined parameters in VESTA software with ball-and-stick and polyhedron models of hexagonal phase.

Figure S2. Average roughness profile of the PFT/CdS composite.

Figure S3. Thickness profilometric image of the ITO-PFTDLC/CdS-Au heterojunction.

Figure S4. High resolution TEM image of CdS NWs.

Compound	20	d-spacing	Phase/Lattice	Col _h	Miller	Alkyl-	Core-Core	Intercolumnar
	(°)	observed	constant	parameter	indices	chain	separation	distance (Å)
		(calculated) Å		(r)		length	(Å)	
						(Å)		
PFT DLC	3.59	24.58 (24.57)	Col _h	1	100			
	6.22	14.19 (14.18)	a = 28.38	1/√3	110	4.50	3.55	28.38
	7.19	12.28 (12.28)		1/2	200			
PFT/CdS	3.67	24.06 (24.05)	Col _h	1	100			
composite	6.35	13.94 (13.89)	a = 27.78	1/√3	110	4.47	3.50	27.78
	7.29	12.10 (12.02)		1/2	200			

Table S1. X-ray data of the PFT DLC and PFT/CdS composite.

Table S2. Details of transit time for the PFT DLC and PFT/CdS composite at 90 V.

Temperature	Transit time (PFT	Transit time
(°C)	DLC)	(PFT/CdS composite)
× ,	(sec)	(sec)
70	0.000130175	1.40E-04
80	6.68805E-05	1.10E-04
90	4.06029E-05	8.44E-05
100	3.48631E-05	5.07E-05
110	2.90968E-05	4.26E-05
120	2.14839E-05	2.80E-05

Methods to calculate the hole mobility:

(I) Direct calculation method:

In this method, first we obtain a best transient photocurrent curve by examining it at various voltages; and we obtain the transit time (τ); then, the hole mobility (μ_h) is calculated using the formula; $\mu_h = d^2 / \tau V$, where τ is the transit time obtained by photocurrent curves, *V* is the applied voltage and *d* is the thickness of ITO cell.

(II) Calculation via slope of transit time versus 1/V:

In this method, we first plot a curve between transit time and inverse of voltages (here we take several voltages) i.e. $\tau = \left(\frac{d^2}{\mu}\right) \left[\frac{1}{V}\right]$. In this relation the value of slope is equivalent to d^2/μ having intercept value equals to zero. Then mobility is calculated using the formula; $\mu = d^2 / slope$.