Electronic Supplementary Material (ESI)

Experimental and theoretical study of bidirectional photoswitching behavior of the 5,5'-diphenylhydantoin Schiff bases: synthesis, crystal structure and kinetics approaches

Petar Todorov,^{a*} Stela Georgieva,^b Petia Peneva,^{a,c} Rusi Rusew,^c Boris Shivachev,^c Anton Georgiev ^{a,d*}

^aDepartment of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria, e-mail: <u>pepi_37@abv.bg</u>

^bDepartment of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria

^cInstitute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria

^dDepartment of Optical Metrology and Holography, Institute of Optical Materials and Technologies, Bulgarian Academy of Science, 1113 Sofia, Bulgaria, e-mail: <u>antonchem@abv.bg</u>

^{a*}Corresponding author: Petar T. Todorov, ^aDepartment of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria, e-mail: <u>pepi_37@abv.bg</u> ^{d*}Corresponding author: Anton Georgiev, ^dDepartment of Optical Metrology and Holography, Institute of Optical Materials and Technologies, Bulgarian Academy of Science, 1113 Sofia, Bulgaria., e-mail: <u>antonchem@abv.bg</u>

NMR spectra

Figure S2.¹³C-NMR spectrum of SB1

Figure S4.¹³C-NMR spectrum of SB2

Figure S6.¹³C-NMR spectrum of SB3

Figure S8.¹³C-NMR spectrum of SB4

Figure S9. First-order plots for the E/Z photoisomerization and enol/keto tautomerization of SB's in 1,4-DOX as well as Z/E and keto/enol back relaxation in room temperature.

Figure S10. First-order plots for the E/Z photoisomerization and enol/keto tautomerization of SB's in DMF.

Electrochemistry

Figure S11. SWVs of 3-amino-5,5'-diphenylhydantoin Schiff bases before and after UV illumination with $\lambda = 350$ nm at pH 12.21 (LiOH/LiCl) and concentrations: **SB1**: 2.41×10⁻⁴; **SB2**: 1.66×10⁻⁴; **SB3**: 8.85×10⁻⁵; **SB4**: 9.74×10⁻⁵ mol L⁻¹ and frequency: 50Hz.

Figure S12. Plot of Ipc (μ A) vs. different concentrations (mol L⁻¹) of 3-amino-5,5'-diphenylhydantoin Schiff bases before (**SB**) and after (**SB**(**IRr**)) UV illumination with $\lambda = 350$ nm and scan rate 100 mV s⁻¹

Figure S13. CVs of 3-amino-5,5'-diphenylhydantoin Schiff bases before UV illumination with $\lambda = 350$ nm at concentrations: **SB1**: 2.41×10⁻⁴; **SB2**: 3.16×10⁻⁴; **SB3**: 3.26×10⁻⁴; **SB4**: 1.41×10⁻⁴ mol L⁻¹ and different scan rate (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.4, 2.8 and 3.0 cm s⁻¹).

Figure S14. CVs of 3-amino-5,5'-diphenylhydantoin Schiff bases after UV illumination with $\lambda = 350$ nm at concentrations: **SB1**: 2.41×10⁻⁴; **SB2**: 3.16×10⁻⁴; **SB3**: 3.26×10⁻⁴; **SB4**: 1.41×10⁻⁴ mol L⁻¹ and different scan rate (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.4, 2.8 and 3.0 cm s⁻¹).

X-ray Diffraction

Table S1. Bond Lengths (Å) for **SB2, SB3** and **SB4** and calculated differences (Δ) between the molecules (only bolded values show substantial deviations, all other are comparable to the esd)

	SB2	Δ (SB2- SB3)	SB3	Δ (SB3- SB4)	SB4	Δ (SB2- SB4)
O1 C1	1.209(4)	-0.002	1.211(2)	-0.002	1.213(2)	-0.004
N3 N2	1.387(4)	0.000	1.387(2)	0.001	1.386(2)	0.001
N3 C10	1.273(5)	0.005	1.268(2)	0.005	1.263(2)	0.010
N2 C1	1.423(4)	0.004	1.419(2)	-0.001	1.420(2)	0.003
N2 C2	1.380(5)	0.006	1.374(2)	-0.011	1.385(2)	-0.005
N1 C1	1.330(5)	-0.007	1.337(2)	-0.004	1.341(2)	-0.011
N1 C3	1.459(4)	-0.001	1.460(2)	-0.001	1.461(2)	-0.002
O2 C2	1.214(4)	0.003	1.211(2)	0.010	1.201(2)	0.013
O16 C16	1.359(5)	-	-	-	-	-
C4AC3	1.537(5)	0.002	1.535(2)	0.006	1.529(3)	0.008
C4AC9A	1.382(5)	-0.002	1.384(3)	0.002	1.382(3)	0.000
C4AC5A	1.396(5)	0.008	1.388(3)	0.014	1.374(3)	0.022
C2 C3	1.538(5)	0.008	1.530(2)	-0.005	1.535(3)	0.003
C4 C3	1.515(5)	-0.022	1.537(2)	0.010	1.527(3)	-0.012
C4 C5	1.386(5)	-0.001	1.387(3)	0.011	1.376(3)	0.010
C4 C9	1.376(5)	-0.003	1.379(2)	0.000	1.379(3)	-0.003
C10 C11	1.444(5)	-0.018	1.462(3)	-0.008	1.470(3)	-0.026
C11 C16	1.389(6)	-0.001	1.390(3)	-	-	_
C11 C12	1.394(6)	0.007	1.387(3)	0.008	1.379(3)	0.015
C5 C6	1.387(6)	0.011	1.376(3)	-0.010	1.386(3)	0.001
C9 C8	1.379(5)	-0.002	1.381(3)	-0.003	1.384(3)	-0.005
C16 C15	1.386(6)	0.007	1.379(3)	-	-	_
C8 C7	1.365(5)	-0.002	1.367(3)	0.002	1.365(3)	0.000
C7 C6	1.364(6)	-0.013	1.377(3)	0.015	1.362(4)	0.002
C9AC8A	1.375(6)	-0.010	1.385(3)	0.004	1.381(4)	-0.006
C5AC6A	1.367(6)	-0.014	1.381(3)	-0.007	1.388(4)	-0.021
C12 C13	1.370(6)	-0.002	1.372(3)	-0.008	1.380(3)	-0.010
C13 C14	1.352(6)	-0.027	1.379(3)	0.015	1.364(3)	-0.012
C8AC7A	1.376(7)	0.007	1.369(3)	0.004	1.365(5)	0.011
C15 C14	1.366(6)	-0.004	1.370(3)	0.008	1.362(3)	0.004
C6AC7A	1.365(6)	-0.005	1.370(3)	0.015	1.355(5)	0.010
N14 C14	-	-	1.469(3)	-	-	-
N14 O14A	-	-	1.221(2)	-	-	-
N14 O14B	-	-	1.224(3)	-	-	-
N4 C11	-	-	-	-	1.338(2)	-
N4 C15	-	-	-	-	1.337(2)	-