Electronic Supplementary Information

Label-free fluorescence detection of protein-ligand interaction based

on binding-induced enzymatic cleavage protection

Lunxi Duan,^{$\ddagger a$} Hongliang Yao,^{$\ddagger a$} Yong Xie^a and Ke Pan^{*a}

^a Department of General Surgery , the Second Xiangya Hospital, Central South

University, Changsha, Hunan, 410008, People's Republic of China

*To whom correspondence should be addressed: E-mail: panke@csu.edu.cn

[‡]These authors contributed equally to this work.

Table S1.	Sequences	of used	oligonuc	leotides
-----------	-----------	---------	----------	----------

Name	Sequence	Length
ssDNA	5'-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3'	30 nt
dsDNA	5'-TATATATATATATATATATA-3'	
	3'-ATATATATATATATATATAT-5'	20 Op
hpDNA'	5'-GATCTACTATGTACAGTTTTCTGTACATAGTAGATC-3'	26 nt
hpDNA	5'-GATCTACTATGTACAGTTTTCTGTACATAGTAGATC-Biotin	36 nt

Detection methods	Detection limit (pM)	Detection time	Limitations	Ref.	
Quantum dot and ruthenium complex	40 pM	1.2 h	Synthesis of chemicals and	1	
	(2.11 ng/mL)	1.2 11	nanomaterials		
Copper nanoclusters	100	25 min	Synthesis of nanomaterial; Low sensitivity	2	
MoS_2 nanosheet and	12	2 h	Synthesis of nanomaterials;	3	
Exo III	13		Modification with fluorophore		
Catalytic hairpin			Modification with		
assembly and	2 pM	6.5 h	fluorophore and quencher;	4	
DINAZyine			Time-consuming		
Loop DNA probe and SYBR Green I	400	2 h	Low sensitivity	5	
Fluorophore-labeled			Tedious preparation of		
DNA and graphene oxide	80	2 h	nanocomposite; Modification with fluorophore	6	
RCA combined with			Modification with		
Exo III-aided signal	0.8	>7 h	fluorophore and quencher:	7	
amplification			Time-consuming		
Exonuclease I and DNAzyme	7	135 min	Modification with	8	
			fluorophore and quencher		
Fluorophore-labeled		M 10 min Fluoro	Modification with	9	
duplex DNA probe	2930		Fluorophore; Low sensitivity		
dsDNA-lighted	450	30 min	Tedious preparation of	10	

Table S2. Comparison of different fluorescent strategy for SA detection

fluorophore			fluorescent molecule	
SYBR Green I and Exo III	~19 (1 ng/mL)	20 min	/	This work

References

- 1. C. Chen, X. Xiang, Y. Liu, G. Zhou, X. Ji and Z. He, Biosens. Bioelectron., 2014, 58, 205-208.
- 2. H. Wang, H. Zhang, Y. Chen and Y. Liu, Biosens. Bioelectron., 2015, 74, 581-586.
- 3. X. Xiang, J. Shi, F. Huang, M. Zheng, Q. Deng and J. Xu, *Biosens. Bioelectron.*, 2015, 74, 227-232.
- 4. S. Liu, C. Cheng, H. Gong and L. Wang, Chem. Commun., 2015, 51, 7364-7367.

5. X. Chen, C. Lin, Y. Chen, F. Luo, Y. Wang and X. Chen, *Biosens. Bioelectron.*, 2016, 83, 97-101.

- 6. Y. He and B. Jiao, *Talanta*, 2017, 163, 140-145.
- 7. L. Ou, H. Wang and X. Chu, Analyst, 2013, 138, 7218-7223.
- 8. J. Ming, T. Jiang, Y. Wang and Z. Lv, Sens. Actuators B: Chem., 2017, 252, 450-457.
- 9. H. Kim, C.Y. Lee, J. Song, J. Yoon, K.S. Park and H.G. Park, RSC Adv., 2018, 8, 39913-39917.
- 10. Z. Qing, L. Zhu, L.Hou, Z. Zou, S. Yang, R. Yang, Sci. China Chem., 2018, 61, 1630-1636.

Fig. S1 Electrophoresis characterization of binding-induced enzymatic cleavage protection. lane a: hpDNA; lane b: hpDNA + SA + Exo III; lane c, hpDNA + Exo III. The final concentration of Exo III, SA, hpDNA, was 1 unit μ L⁻¹, 10 μ g mL⁻¹, 200 nM, respectively.

Fig. S2 (a) Fluorescence intensity of the detection system under different hpDNA concentration. (b) The effect of hpDNA concentration on the detection performance by the manner of signal-to-background (F/F_0), where F is the fluorescence intensity of the detection system in the presence of SA and F_0 is that in the absence of SA.

Fig. S3 (a) Fluorescence intensity of the detection system under different SGI concentration in the absence of SA (F_0) or in the presence of SA (F). (b) The effect of SGI concentration on the detection performance by the manner of signal-to-background (F/F_0).

Fig. S4 (a) Fluorescence intensity of the detection system under different Exo III amount. (b) The effect of Exo III concentration on the detection performance by the manner of signal-to-background (F/F_0), where F is the fluorescence intensity of the detection system in the presence of SA and F_0 is that in the absence of SA.

Fig. S5 (a) Fluorescence spectra of the detection system under different enzymatic reaction time. (b) The effect of reaction time on the detection performance by the manner of signal-to-background (F/F_0), where F is the fluorescence intensity of the detection system in the presence of SA and F_0 is that in the absence of SA.

Fig. S6 Selectivity of the approach for SA detection in serum samples. The final concentration of SA, SA, HSA, and AFP was 10 μ g mL⁻¹.