Electronic Supplementary Information (New Journal of Chemistry)

Facile surface modification of PVDF membrane via CaCO₃ mineralization for efficient oil/water emulsion separation

Junda Wuᵃ, Atian Xieᵇ, Jin Yangᵃ, Jiangdong Daiᵃ, Chunxiang Liᵃ, Yongsheng Yanᵃ*, Jiuyun Cuiᵇ*

ᵃInstitute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
ᵇSchool of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, China

*Corresponding Author

E-mail: yys@mail.ujs.edu.cn, cxy@aust.edu.cn

Tel: +86 0511-88790683; Fax: +86 0511-88791800
Fig. S1. SEM and EDS mapping of the PVDF@pDA@CaCO$_3$-2 composite membrane
Fig. S2. The cross-section SEM and EDS mapping of the PVDF@pDA@CaCO₃-2 composite membrane.
Fig. S3. The stress-strain curves of the membranes
Fig. S4. The particle size distribution of various emulsions before/after the separation by PVDF@pDA@CaCO$_3$-2 membrane
Fig. S5. Permeation flux and separation efficiency of PVDF@pDA@CaCO$_3$-2 composite membrane for petroleum ether/water emulsions with various pH