Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

A novel near-infrared xanthene fluorescent probe for detection of

thiophenol in vitro and in vivo

Yongquan Wu,^{a,b} Aiping Shi,^a Huiying Liu,^a Yuanyan Li,^a Weican Lun,^a Hong Zeng*^a and

Xiaolin Fan*a

^a School of Chemistry and Chemical Engineering, Gannan Normal University, Shiyuan South

Road, Ganzhou 341000, P. R. China, E-mail: fanxl@gnnu.edu.cn; zenghong@gnnu.edu.cn

bJiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing

University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China

Fig. S1 Linearity between the fluorescence intensity at 740 nm versus PhSH concentration in the range of 2 –18 μ M. λ_{ex} = 670 nm, λ_{em} = 740 nm.

Fig. S2 The pH-dependent fluorescence response of NOF (10 μ M) towards PhSH (30 μ M).

$$\lambda_{\text{ex}} = 670 \text{ nm}, \lambda_{\text{em}} = 740 \text{ nm}.$$

Fig. S3 Changes of fluorescence intensity of NOF irradiated at 670 nm for 60 min, $\lambda_{em} = 740$

nm.

References	λ_{ex}/nm	$\lambda_{em max}/nm$	Detection limit/µM	Imaging	
				applications	
Jiang, W. et al. Angew.	465	555	2.000	Not given	
Chem Int. Ed., 2007, 46,					
8445.					
Lin. W. et al. Chem.	405	494	0.0018	HeLa cells	
Commun., 2010, 46, 1503.					
Wang Z. et al. Anal.	481	590	0.020	Not given	
Chem., 2012, 84, 4915.					
Yu D. et al. Anal. Chem.,	490	670	0.150	HeLa cells	
2014 , 86, 8835.					
Shao, X. et al. Anal.	580	633	0.037	SMMC-7721	
Chem., 2015, 87, 339.				cells	
Zhang, W. et al. J. Mater.	380	517	0.0103	A549 cells	
Chem. C, 2015 , 3, 8248.					
Yue Y. et al. Anal. Chem.,	404	536	0.026	HepG2 cells	
2016 , 88, 10499.					
Shang, H. et al. Biosen.	570	625	0.363	HeLa cells	
Bioelectron., 2017, 95, 81.				Living tissues	
Xiong, L. et al. ACS Sens.,	538	645	0.0099	Not given	
2017 , 2, 599.					
Zhang, D. et al. Ind. Eng.	490	510	0.026	MCF-7 cells	
Chem. Res., 2017 , 56,					
9303.					
Guo S. et al. Talanta,	595	653	0.015	HeLa Cells	
2018 , 185, 359.					
Zhou S. et al. Sens.	488	590	0.036	HeLa cells	
Actuators B Chem., 2018,					
276, 361.					
Li Y. et al. Talanta, 2019,	540	658	0.220	HeLa cells	
199, 355.					
Liu, Q. et al. Sens.	543	624	0.0081	HepG2 cells	
Actuators B Chem., 2019,				HeLa cells	
283, 820.					
Xu T. et al. ACS Sustain.	470	585	0.0028	Not given	
Chem. Eng., 2020 , 8, 6413.					
Yang L. et al. Dyes	574	620	0.550	Not given	
<i>Pigments,</i> 2020 , 175,					
108154.					
This work	670	740	0.120	MCF-7 cells	
				mice	

Table S1. Comparison of representative fluorescent probes for thiophenol (PhSH)

Fig. S4 Fluorescence intensity of NOF (10 μ M) in the presence of various analytes. Black bars represent the addition of a single analyte (50 μ M). Red bars represent the subsequent addition of thiophenol (30 μ M) to the mixture. $\lambda_{ex} = 670$ nm, $\lambda_{em} = 740$ nm.

Fig. S5 Fluorescence intensity of NOF (10 μ M) in the presence of various metal ions. Black bars represent the addition of a single metal ion (50 μ M). Red bars represent the subsequent addition of thiophenol (30 μ M) to the mixture. $\lambda_{ex} = 670$ nm, $\lambda_{em} = 740$ nm.

Fig. S6 (a) Absorption and (b) fluorescence spectra of NOF and the product of NOF reacted with PhSH. $\lambda_{ex} = 670 \text{ nm}, \lambda_{em max} = 740 \text{ nm}.$

Fig. S7 Representations of the frontier molecular orbitals (MOs) for the S_0 geometry of NOF and NOF-OH as determined at the DFT//B3LYP/6-31G* level.

Table S2 Frontier molecular orbital energies (in eV) calculated at the DFT//B3LYP/6-31G* level.

Sample	НОМО-2	HOMO-1	НОМО	LUMO	LUMO+1	LUMO+2	GAP
NOF	-9.57	-8.81	-8.18	-5.60	-4.58	-4.24	2.58
NOF-OH	-9.56	-8.73	-8.06	-5.54	-3.88	-3.82	2.52

Fig. S8 Viable cells after treatment with indicated concentrations of probe NOF after 24 hours, the cell viability was observed via MTT assay.

Fig. S9 ¹H NMR (400 MHz, CDCl₃) spectrum of compound 1.

Fig. S10 ¹H NMR (400 MHz, CD₃OD) spectrum of NOF.

Fig. S11 HR-MS of NOF.

Fig. S12 ¹H NMR (400 MHz, CD₃OD) spectrum of NOF-OH.

Fig. S13 HR-MS of NOF-OH.