Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Layered double hydroxides oriented assembly by negatively charged graphene oxide for NO₂ sensing at ppb level

Yuxiang Qin*a,b,c, Ruling Zhaoa, Chenxiang Baia

^a School of Microelectronics, Tianjin University, Tianjin, 300072, China

^b Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology,

Tianjin University, Tianjin, 300072, China

^cKey Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China

*Corresponding author. Tel.:+86 22 27402372

E-mail address: qinyuxiang@tju.edu.cn (Yuxiang Qin)

Postal address: School of Microelectronics, Tianjin University,92 Weijin Road, Nankai District, Tianjin 300072, China

Supplementary data

Fig. S1. (a-c) Dynamic responses of the LG2 sensors developed with 90 s-, 60 s- and 30 s-spinning to varying concentrations of NO₂; (d) Response comparisons of the three sensors.

Fig. S2. Raman spectra of GO before and after hydrothermal treatment.

The hydrothermally-treated sample shows much higher I_D/I_G ratio (1.21) than the initial sample of GO (0.78). The increased ratio of I_D/I_G demonstrates the fact that rGO has been formed in the hydrothermal process.

Fig. S3. Sensing response of a new prepared LG2 sensor to 1 ppm NO_2 under different relative humidity.

The calculated response values $((R_a-R_g)/R_a*100\%)$ for the newly prepared LDHs/rGO sensor are 66% and 57% in the ambient with 35%RH and 78%RH respectively. It demonstrates that the relative humidity has little influence on the performance of the present nanocomposite of LDHs/rGO.