Catalytic H₂ Evolution/Oxidation in [FeFe]-hydrogenase biomimetics: account from DFT on the interplay of related issues and proposed solutions.

Federica Arrigoni,* Luca Bertini, Raffaella Breglia,° Claudio Greco,° Luca De Gioia, Giuseppe Zampella*

Department of Biotechnology and Biosciences, University of Milano - Bicocca,

Piazza della Scienza 2, 20126 Milan, Italy

° Department of Earth and Environmental Sciences, University of Milano - Bicocca,

Piazza della Scienza 1, 20126 Milan, Italy

S1. Effect of the nature and number of P ligands installed on the Fe₂ core on ΔE° gap.

Upon 1e reduction, repulsions originated by Et's groups are removed and strain is alleviated, but only in μ -H isomers, in which the breaking of one Fe-H and Fe-Fe bonds occurs, allowing the Fe moieties to move apart. The bulky PEt₃'s have thus more space to be accommodated, a situation described as "US" (shorthand form for "unstrained").

In contrast, the reduction of 4-PEt₃ t-H does not alleviate the steric strain, that still affects Fe^{II}Fe^I products: the origin of this difference resides in the μ -CO that is present *exclusively* in t-H. Conceivably, four P ligands provide each Fe with large amount of electron density to back-donate to the strong π -acceptor CO. Moreover, μ -CO in the 4-PEt₃ t-H is trans oriented to a strong σ donor per Fe, which better funnels electron density into Fe- μ C(O)-Fe bonds. These strong interactions hold together the two Fe subunits, impeding to release repulsions, in sharp contrast to what occurring in μ -H isomers.

The non-obvious opposite reductive behavior ($\Delta E^{\circ}gap > 0$) in similar 4-PMe₃ has been justified by a lower crowding experienced by PMe₃ vs PEt₃, once the two ligands have been installed in metal coordination.

S2. Effect of a strong σ -donor apically bound at Fe on ΔE° gap.

As an example, replacing CH_3S^- at Fe_p by a CO leads to ΔE° gap >0, regardless of the presence of four PEt₃ in the other coordination positions. It can be noted that the most stable isomer in such case features the CO in Fe basal position. As mentioned before, L_{ap} is crucial to convey further electron density into Fe orbitals, that in turn π -back donate it to the bridging CO. This makes one Fe-CO bond stronger in t-H.

Notably, models with a neutrally charged σ -donor (e.g., NHC) replacing CH₃S⁻ still feature ΔE° gap < 0, despite being starting t-H not subject to steric destabilization (US). Structural parameters (Fe-H, Fe-Fe and Fe-P distances) clearly show that t-H's with neutral L_{ap} have the two Fe subunits quite separated already at the Fe^{II}Fe^{II} state, thus resulting *stable before and after reduction*. This is compatible with the less electron density pushed by neutral ligands into the Fe-µCO bond in trans to bis-carbene (L_{ap}).

The σ -donating power of L_{ap} and the Fe-µCO-Fe bond strength are directly related and this explains why diferrous L_{ap} = CH₃S⁻ instance features compact and strained structure, whereas L_{ap} = (neutral donors) do not. Unexpectedly, species with L_{ap}=CO (weak σ -donor; strong π -acceptor) feature the same US t-H structure as L_{ap} = NHC, but opposite reductive behavior.

Unexpectedly (see the body text of the main discussion), species with L_{ap}=CO (weak σ -donor; strong π -acceptor) feature the same US t-H structure as Lap=NHC, but opposite reductive behavior, i.e., ΔE° gap >0. The apparent contradiction requires considering the electronic properties that coordinated L's have on the Fe-Fe, rather than the Fe-µCO-Fe bond strength (see Scheme S1). Although in ferrous species the 18-electron rule would formally require a genuine Fe-Fe bond formation, one may argue that in very electron rich metal cores (as in the case of L_{ap}=donors) such requisite is less strictly necessary, due to some compensation brought by strong donors. In contrast, with CO, Fe is clearly electron poorer, so that the electron counting entails Fe-Fe bond formation. In such case, therefore, the steric strain in t-H is essentially due to a relatively strong Fe-Fe bond. The subsequent reduction alleviates the strain, because the Fe-Fe bond is relatively weaker than the Fe-CO bond of the more electron rich derivatives.

Scheme S1. Electron donating/accepting influence on key bonds that govern the repulsive strain presence (absence) in oxidized diiron structures.

A generalized picture of the "strain release/retention" model is: ΔE° gap </> 0 ultimately depends on change/retention that the initial strain state (S/US) of t-H and μ -H of a given species manifests upon reduction. As an example, ΔE° gap < 0 can be obtained both by $[(S \rightarrow US)_{\mu H}/(S \rightarrow S)_{tH}]$ and " $[(S \rightarrow US)_{\mu H}/(US \rightarrow US)_{tH}]$ ".