Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic supplementary information

for

Photophysical properties and electron transfer photochemical reactivity of substituted phthalimides

Leo Mandić,^{a,b} Iva Džeba,^b Dijana Jadreško,^c Branka Mihaljević,^b László Biczók,^d Nikola Basarić^a*

^a Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia. Fax: +385 1 4680 195; Tel: +385 12 4561 141; E-mail: <u>nbasaric@irb.hr</u> ^b Department of Material Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.

^c Laboratory for Physical Chemistry of Traces, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.

^d Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1519 Budapest, P.O. Box 286, Hungary

Content:

1. Photochemical experiments (Figs S1-S3)	S2
2. Cyclic voltammetry (Figs S4-S9)	S4
3. UV-Vis and fluorescence spectroscopy (Figs S10-S16 and Table S1)	S 8
4. Determination of pK_a values (Figs S17-S23)	S12
5. Laser flash photolysis (Figs S24-S44)	S16
6. MS and NMR spectra (Figs S45-S81)	S24

<u>1. Photochemical experiments</u>

Fig S1. Photodecarboxylation efficiency of **2** at different buffer pH values (left: CH₃CN-H₂O (1:1 - v/v), right: acetone-H₂O (1:1 - v/v); c (**2**) = 10⁻³ mol dm⁻³, c (phosphate) = 0.05 mol dm⁻³).

Fig S2. Photodecarboxylation efficiency of 4 at different buffer pH values (left: CH₃CN-H₂O (1:1 - v/v), right: acetone-H₂O (1:1 - v/v); c (4) = 10⁻³ mol dm⁻³, c (phosphate) = 0.05 mol dm⁻³).

Fig S3. Photodecarboxylation efficiency of **6** at different buffer pH values (CH₃CN-H₂O (1:1 - v/v); c (**6**) = 10⁻³ mol dm⁻³, c (phosphate) = 0.05 mol dm⁻³).

Photochemical reaction quantum yield was caculated according to:

wavelength.

$$\Phi = \Phi_R \frac{x}{x_R} \frac{A}{A_R} \frac{\varepsilon_R}{\varepsilon} \frac{1 - 10^{-A_R}}{1 - 10^{-A}}$$
(S1)

 Φ and Φ_{R} – photodecarboxylation quantum yield of compound and the actinometer; *x* and *x*_R – conversion of compound and the actinometer;

A and $A_{\rm R}$ – absorbance of compound and the actinometer at the irradiation wavelength; ε and $\varepsilon_{\rm R}$ – molar absorption coefficient of compound and the actinometer at the irradiation

S3

2. Cyclic voltammetry

Fig S4. Cyclic voltammogram of 1 ($c = 10^{-3}$ mol dm⁻³) in N₂-purged CH₃CN in the presence of NBu₄PF₆ (c = 0.1 mol dm⁻³).

Fig S5. Cyclic voltammogram of **2** ($c = 10^{-3}$ mol dm⁻³) in N₂-purged CH₃CN in the presence of NBu₄PF₆ (c = 0.1 mol dm⁻³).

Fig S6. Cyclic voltammogram of **3** ($c = 10^{-3}$ mol dm⁻³) in N₂-purged CH₃CN in the presence of NBu₄PF₆ (c = 0.1 mol dm⁻³).

Fig S7. Cyclic voltammogram of 4 ($c = 10^{-3}$ mol dm⁻³) in N₂-purged CH₃CN in the presence of NBu₄PF₆ (c = 0.1 mol dm⁻³).

Fig S8. Cyclic voltammogram of 5 ($c = 10^{-3}$ mol dm⁻³) in N₂-purged CH₃CN in the presence of NBu₄PF₆ (c = 0.1 mol dm⁻³).

Fig S9. Cyclic voltammogram of **6** ($c = 10^{-3}$ mol dm⁻³) in N₂-purged CH₃CN in the presence of NBu₄PF₆ (c = 0.1 mol dm⁻³).

<u>The work for the separation of charges</u>, needed for the estimation of the Gibbs energy for PET was estimated from:

$$w(\mathbf{D}^{+}\mathbf{A}^{-})/\mathrm{Jmol}^{-1} = N_{\mathrm{A}}z(\mathbf{D}^{+})z(\mathbf{A}^{-})e^{2}/(4\pi\epsilon_{0}\epsilon_{\mathrm{r}}a)$$
(S2)

Where:

 N_A Avogadro number, $6.022 \times 10^{23} \text{ mol}^{-1}$ a5 Å, distance between the donor (carboxylate) and acceptor (phthalimide), computed
by CAM-B3LYP/cc-pVTZzcharge (+1 or -1)eelementary charge, $1.602 \times 10^{-19} \text{ C}$ $e^2/(4\pi \epsilon_0) = 2.307 \times 10^{-28} \text{ J m}$ ϵ_0 permittivity of vacuum ($8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$) ϵ_r relative statistic permittivity (for H2O ϵ_r 80.16)

3. UV-Vis and fluorescence spectroscopy

Fig S10. Absorption spectrum of 1 in CH₃CN.

Fig S11. Absorption spectrum of 2 in CH₃CN.

Fig S12. Absorption spectrum (left) and normalized emission (red line, $\lambda_{exc} = 310$ nm) and excitation spectra of **3** (blue line, $\lambda_{em} = 400$ nm) in CH₃CN at 25 °C (right).

Fig S13. Absorption spectrum (left) and normalized emission (red line, $\lambda_{exc} = 310$ nm) and excitation spectra of **4** (blue line, $\lambda_{em} = 400$ nm) in CH₃CN at 25 °C (right).

Fig S14. Absorption spectrum of 5 in CH₃CN.

Fig S15. Absorption spectrum (left) and normalized emission (red line, $\lambda_{exc} = 360$ nm) and excitation spectrum of **6** (blue line, $\lambda_{em} = 470$ nm) in CH₃CN at 25 °C (right).

Fig S16. Normalized emission spectra of **6H** ($\lambda_{exc} = 360 \text{ nm}$), **3H** ($\lambda_{exc} = 310 \text{ nm}$) and **4H** ($\lambda_{exc} = 310 \text{ nm}$) in CH₃CN at 25 °C.

Fluorescence quantum yield was calculated according to:

$$\Phi = \Phi_R \left(\frac{n}{n_R}\right)^2 \frac{I}{I_R} \frac{1 - 10^{-A_R}}{1 - 10^{-A}}$$
(S3)

 Φ and $\Phi_{\rm R}$ – fluorescence quantum yield of compound and the reference; *n* and *n*_R – refractive index of the solvent in which compound or the reference was dissolved; *A* and *A*_R – absorbance of compound and reference at the excitation wavelength; *I* and *I*_R – area under emission curve of compound and the reference.

Fluorescence decays were obtained with time-correlated single-photon counting method. A Picoquant diode laser (pulse duration ~70 ps, wavelength 368 nm) served as excitation light source. The fluorescence signals were monitored with a Hamamatsu R3809U-51 microchannel plate photomultiplier, which was connected to a Picoquant Timeharp 100 electronics having 36 ps/channel time resolution. The histograms were analyzed by a nonlinear least-squares deconvolution method using Picoquant FluoFit software. The quality of the fit was judged by the reduced χ^2 being close to unity and the random distribution of the weighted residuals. Fluorescence decays were fit to a sum of exponentials using the following expression:

$$F(t) = \alpha_1 \exp\left(-\frac{t}{\tau_1}\right) + \alpha_2 \exp\left(-\frac{t}{\tau_2}\right) + \alpha_3 \exp\left(-\frac{t}{\tau_3}\right) + \dots$$
(S4)

Molecule/solvent	τ / ns ^a	Pre-exponential factors ^b				
		390 nm	410 nm	440 nm	470 nm	
3/CH ₃ CN	1.68 ± 0.01	1.00	0.99	0.95	0.85	
	16.0 ± 0.4		0.01	0.05	0.15	
3/CH ₃ CN-H ₂ O	4.6 ± 0.2	0.20	0.14	0.10	0.09	
pH 4.5	24.7 ± 1.0	0.80	0.86	0.90	0.91	
3/CH ₃ CN-H ₂ O	0.46 ± 0.01	0.88	0.93	0.97	0.99	
рН 8.3	23.7 ± 1.0	0.12	0.07	0.03	0.01	
4/CH ₃ CN	2.33 ± 0.08	0.97	0.95	0.92	0.90	
	14.7 ± 0.3	0.03	0.05	0.08	0.10	
	L	450 nm	475 nm	500 nm	620 nm	
4/CH ₃ CN-H ₂ O	≤ 0.1	0.99	0.93	0.90	0.26	
pH 4.5	2.4 ± 0.3	0.003	0.068	0.08	0.74	
	22.0 ± 0.8	0.007	0.003	0	0	
4/CH ₃ CN-H ₂ O	≤ 0.1	0.99	0.92	0.28	0	
рН 6.4	2.20 ± 0.06	0.008	0.08	0.72	1.00	
4/CH ₃ CN-H ₂ O	1.88 ± 0.01					
pH 8.3						
6/CH ₃ CN	17.2 ± 0.2					
		460 nm	490 nm	520 nm	550 nm	
6/CH ₃ CN-H ₂ O	0.4 ± 0.1	0.48	0.21	0	0	
pH 4.5	7.32 ± 0.05	0.52	0.79	1.00	1.0	
6/CH ₃ CN-H ₂ O	0.4 ± 0.1	0.43	0	0	0	
pH 8.3	5.84 ± 0.07	0.57	1.00	1.00	1.00	

Table S1. Lifetimes and pre-exponential factors obtained from the analysis of fluorescence decays for **3**, **4** and **6**.

^a The quoted errors correspond to the maximum absolute deviations. ^b Estimated errors on preexponential factors range from 5% for the main decay components up to 30% for the minor decay components.

4. Determination of pK_a values

Fig S17. Absorption spectra of 4 ($c = 2.72 \times 10^{-5}$ mol dm⁻³) in CH₃CN-H₂O (1:9 - v/v) in the presence of phosphate buffer (c = 0.05 mol dm⁻³) at different buffer pH values (left) and dependence of the absorbance at 380 nm on pH (right); black dots are the measured values and the red line corresponds to the calculated values by nonlinear regression analysis with Specfit software. The measurements were conducted at 25 °C.

Fig S18. Emission spectra of **4H** ($\lambda_{exc} = 380$ nm, $c = 3.30 \times 10^{-5}$ mol dm⁻³) in CH₃CN-H₂O (1:9 - v/v) in the presence of phosphate buffer (c = 0.05 mol dm⁻³) at different buffer pH values (left) and dependence of the fluorescence intensity at 560 nm on pH (right); black dots are the measured values and the red line corresponds to the calculated values by nonlinear regression analysis with Specfit software. The measurements were conducted at 25 °C.

Fig S19. Absorption spectra of **4H** ($c = 3.30 \times 10^{-5}$ mol dm⁻³) in CH₃CN-H₂O (1:9 - v/v) in the presence of phosphate buffer (c = 0.05 mol dm⁻³) at different buffer pH values (left) and dependence of the absorbance at 380 nm on pH (right); black dots are the measured values and the red line corresponds to the calculated values by nonlinear regression analysis with Specfit software. The measurements were conducted at 25 °C.

Fig S20. Emission spectra of 6 ($\lambda_{exc} = 370 \text{ nm}$, $c = 1.75 \times 10^{-5} \text{ mol dm}^{-3}$) in CH₃CN-H₂O (1:9 - v/v) in the presence of KCl ($c = 2 \text{ mol dm}^{-3}$) at different solution pH values (left) and dependence of the fluorescence intensity at 540 nm on pH (right); black dots are the measured values and the red line corresponds to the calculated values by nonlinear regression analysis with Specfit software. The measurements were conducted at 25 °C.

Fig S21. Emission spectra of **6** ($\lambda_{exc} = 370 \text{ nm}$, $c = 1.76 \times 10^{-5} \text{ mol dm}^{-3}$) in CH₃CN-H₂O (1:9 - v/v) in the presence of phosphate buffer ($c = 0.05 \text{ mol dm}^{-3}$) at different buffer pH values (left) and dependence of the fluorescence intensity at 540 nm on pH (right); black dots are the measured values and the red line corresponds to the calculated values by nonlinear regression analysis with Specfit software. The measurements were conducted at 25 °C.

Fig S22. Absorption spectra of **6H** ($c = 1.84 \times 10^{-5}$ mol dm⁻³) in CH₃CN-H₂O (1:9 - v/v) in the presence of KCl (c = 2 mol dm⁻³) at different solution pH values (left) and dependence of the absorbance at 370 nm on pH (right); black dots are the measured values and the red line corresponds to the calculated values by nonlinear regression analysis with Specfit software. The measurements were conducted at 25 °C.

Fig S23. Emission spectra of **6H** ($\lambda_{exc} = 370$ nm, $c = 1.84 \times 10^{-5}$ mol dm⁻³) in CH₃CN-H₂O (1:9 - v/v) in the presence of KCl (c = 2 mol dm⁻³) at different solution pH values (left) and dependence of the fluorescence intensity at 540 nm on pH (right); black dots are the measured values and the red line corresponds to the calculated values by nonlinear regression analysis with Specfit software. The measurements were conducted at 25 °C.

5. Laser Flash Photolysis

Fig S24. Transient absorption spectra of 1 ($c = 4.41 \times 10^{-4} \text{ mol dm}^{-3}$) in N₂-purged CH₃CN-H₂O (1:1 - v/v) in the presence of phosphate buffer ($c = 0.05 \text{ mol dm}^{-3}$) at pH 4 (left) and pH 7 (right). $E_{\text{laser}} = 20 \text{ mJ}$.

Fig S25. Decay of transient absorbance at 330 nm for N₂-purged CH₃CN-H₂O (1:1 - v/v) solution of **1** in the presence of phosphate buffer ($c = 0.05 \text{ mol dm}^{-3}$) at pH 4 (left), and the corresponding weighted residuals (right). $E_{\text{laser}} = 16 \text{ mJ}$.

Fig S26. Decay of transient absorbance at 330 nm (top left) and 400 nm (bottom left) and their corresponding weighted residuals (top right and bottom right) for N₂-purged CH₃CN-H₂O (1:1 - v/v) solution of **1** in the presence of phosphate buffer (c = 0.05 mol dm⁻³) at pH 7. $E_{laser} = 20$ mJ.

Fig S27. Transient absorption spectra of 2 ($c = 3.50 \times 10^{-4} \text{ mol dm}^{-3}$) in N₂-purged CH₃CN. $E_{\text{laser}} = 12 \text{ mJ}$. $A_{266} = 0.4$.

Fig S28. Decay of transient absorbance at 360 nm in N₂-purged (left) and non-purged (right) solution of **2** in CH₃CN. $E_{\text{laser}} = 8 \text{ mJ}$.

Fig S29. Transient absorption spectra of **2** ($c = 2.16 \times 10^{-4}$ mol dm⁻³ (pH 4); $c = 1.62 \times 10^{-4}$ mol dm⁻³ (pH 7)) in N₂-purged CH₃CN-H₂O (1:1 - v/v) in the presence of phosphate buffer (c = 0.05 mol dm⁻³) at pH 4 (left) and pH 7 (right). $E_{\text{laser}} = 20$ mJ.

Fig S30. Decay of transient absorbance at 350 nm for N₂-purged CH₃CN-H₂O (1:1 - v/v) solution of **2** in the presence of phosphate buffer ($c = 0.05 \text{ mol dm}^{-3}$) at pH 4 (left) and the corresponding weighted residuals (right). $E_{\text{laser}} = 20 \text{ mJ}$.

Fig S31. Decay of transient absorbance at 330 nm for N₂-purged CH₃CN-H₂O (1:1 - v/v) solution of **2** in the presence of phosphate buffer ($c = 0.05 \text{ mol dm}^{-3}$) at pH 7, at two different time-scales. $E_{\text{laser}} = 20 \text{ mJ}$.

Fig S32. Transient absorption spectra of **3** ($c = 2.84 \times 10^{-4} \text{ mol dm}^{-3}$) in N₂ purged CH₃CN. $E_{\text{laser}} = 8 \text{ mJ}$. $A_{266} = 0.46$.

Fig S33. Decay of transient absorbance at 390 nm for N₂-purged (left) and non-purged (right) CH₃CN solution of **3**. $E_{\text{laser}} = 8 \text{ mJ}$.

Fig S34. Transient absorption spectra of **3** ($c = 1.05 \times 10^{-4}$ mol dm⁻³ (pH 4); $c = 7.55 \times 10^{-5}$ mol dm⁻³ (pH 7)) in N₂-purged CH₃CN-H₂O (1:1 - v/v) in the presence of phosphate buffer (c = 0.05 mol dm⁻³) at pH 4 (left) and pH 7 (right). $E_{\text{laser}} = 20$ mJ.

Fig S35. Decay of transient absorbance at 380 nm for N₂-purged CH₃CN-H₂O (1:1 - v/v) solution of **3** in the presence of phosphate buffer ($c = 0.05 \text{ mol dm}^{-3}$) at pH 4 (left) and pH 7 (right). $E_{\text{laser}} = 20 \text{ mJ}$.

Fig S36. Transient absorption spectra of 4 ($c = 1.89 \times 10^{-4} \text{ mol dm}^{-3}$) in N₂-purged CH₃CN. $E_{\text{laser}} = 8 \text{ mJ}$.

Fig S37. Decay of transient absorbance at 380 nm for N₂-purged (left) and O₂-purged (right) CH₃CN solution of **4**. $E_{\text{laser}} = 8 \text{ mJ}$.

Fig S38. Transient absorption spectra of 4 ($c = 1.35 \times 10^{-4}$ mol dm⁻³ (pH 4); $c = 4.53 \times 10^{-5}$ mol dm⁻³ (pH 7)) in N₂-purged CH₃CN-H₂O (1:1 - v/v) in the presence of phosphate buffer (c = 0.05 mol dm⁻³) at pH 4 (left) and pH 7 (right). $E_{\text{laser}} = 20$ mJ.

Fig S39. Decay of transient absorbance at 380 nm for N₂-purged CH₃CN-H₂O (1:1 - v/v) solution of **4** in the presence of phosphate buffer ($c = 0.05 \text{ mol dm}^{-3}$) at pH 4 (left) and pH 7 (right). $E_{\text{laser}} = 20 \text{ mJ}$.

Fig S40. Transient absorption spectra of 5 ($c = 3.24 \times 10^{-5}$ mol dm⁻³) in N₂-purged CH₃CN. $E_{\text{laser}} = 20$ mJ.

Fig S41. Transient absorption spectra of 6 ($c = 1.74 \times 10^{-5}$ mol dm⁻³) in N₂-purged CH₃CN (left) and decay of transient absorbance at 330 nm (right). $E_{\text{laser}} = 20$ mJ.

Fig S42. Transient absorption spectra of *N*-methylphthalimide ($c = 5.37 \times 10^{-4} \text{ mol dm}^{-3}$) in N₂purged CH₃CN-H₂O (1:1 - v/v) in the presence of phosphate buffer ($c = 0.05 \text{ mol dm}^{-3}$) at pH 4 (left) and decay of transient absorbance at 330 nm (right). The decay was fit to a sum of two exponentials with decay times of $\tau = 10.6 \pm 0.4 \text{ µs}$ and $\tau = 46 \pm 3 \text{ µs}$. $E_{\text{laser}} = 8 \text{ mJ}$.

Fig S43. Transient absorption spectra of *N*-methylphthalimide ($c = 5.37 \times 10^{-4} \text{ mol dm}^{-3}$) in N₂purged CH₃CN-H₂O (1:1 - v/v) in the presence of phosphate buffer ($c = 0.05 \text{ mol dm}^{-3}$) at pH 7 (left) and decay of transient absorbance at 330 nm (right). The decay was fit to a sum of two exponentials with decay times of $\tau = 10.7 \pm 0.7 \mu \text{s}$ and $\tau = 51 \pm 4 \mu \text{s}$. $E_{\text{laser}} = 8 \text{ mJ}$.

Fig S44. Decay of transient absorption for *N*-methylphthalimide ($c = 5.37 \times 10^{-4} \text{ mol dm}^{-3}$) in N₂purged CH₃CN-H₂O (1:1 - v/v) in the absence of buffer The decay was fit to a sum of two exponentials with decay times of $\tau = 12 \pm 2 \mu \text{s}$ and $\tau = 54 \pm 3 \mu \text{s}$. $E_{\text{laser}} = 8 \text{ mJ}$.

6. MS and NMR Spectra

Fig S45. Mass spectrum of 2COCH₃ (obtained by photolysis of 2 in CH₃CN-H₂O (2:1 - v/v)).

Fig S46. Mass spectrum of **3H** (obtained by photolysis of **3** in CH₃CN-H₂O (3:1 - v/v)).

Fig S47. Mass spectrum of **3H/3D** (obtained by photolysis of **3** in CH₃CN-D₂O (3:1 - v/v)).

Fig S48. ¹H (DMSO- d_6 , 600 MHz) NMR spectrum of **2**.

file: ...:\NMR (AntiVir)\Compound 15\1H\fid expt: <zg30> transmitter freq.: 600.135401 MHz time domain size: 32768 points width: 12019.23 Hz = 20.0275 ppm = 0.366798 Hz/pt number of scans: 19 freq. of 0 ppm: 600.129995 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Fig S49. ¹³C (DMSO-*d*₆, 150 MHz, APT) NMR spectrum of **2**.

transmitter freq.: 150.917899 MHz time domain size: 65536 points width: 39370.08 Hz = 260.8708 ppm = 0.600740 Hz/pt number of scans: 2249 processed size: 32768 complex points LB: 1.000 GF: 0.0000

Fig S50. ¹H (DMSO- d_6 , 300 MHz) NMR spectrum of **3**.

file: ...:\NMR (AntiVir)\Compound 13\1H\fid expt: <zg30> transmitter freq.: 300.132701 MHz time domain size: 32768 points width: 6172.84 Hz = 20.5670 ppm = 0.188380 Hz/pt number of scans: 28 freq. of 0 ppm: 300.129999 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Fig S51. ¹³C (DMSO- d_6 , 150 MHz, APT) NMR spectrum of **3**.

time domain size: 65536 points width: 39370.08 Hz = 260.8708 ppm = 0.600740 Hz/pt number of scans: 641

LB: 1.000 GF: 0.0000

Fig S52. ¹H (DMSO- d_6 , 300 MHz) NMR spectrum of 4.

file: ...\NMR (SubstPhth)\Compound 4\1H\fid expt: <zg30> transmitter freq.: 300.132701 MHz time domain size: 32768 points width: 6172.84 Hz = 20.5670 ppm = 0.188380 Hz/pt number of scans: 14 freq. of 0 ppm: 300.129998 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Fig S53. ¹³C (DMSO-*d*₆, 75 MHz, COM) NMR spectrum of **4**.

Fig S54. ¹H (DMSO- d_6 , 300 MHz) NMR spectrum of 5.

file: ...:\NMR (AntiVir)\Compound 11\1H\fid expt: <zg30> transmitter freq.: 300.132701 MHz time domain size: 32768 points width: 6172.84 Hz = 20.5670 ppm = 0.188380 Hz/pt number of scans: 12 freq. of 0 ppm: 300.130000 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

S33

Fig S55. ¹³C (DMSO-*d*₆, 75 MHz, COM) NMR spectrum of **5**.

LB: 1.000 GF: 0.0000

time domain size: 32768 points width: 17985.61 Hz = 238.2980 ppm = 0.548877 Hz/pt number of scans: 1246

S34

Fig S56. ¹H (CD₃OD, 300 MHz) NMR spectrum of **6**.

file: ...:\NMR (AntiVir)\Compound 12\1H\fid expt: <zg30> transmitter freq.: 300.132701 MHz time domain size: 32768 points width: 6172.84 Hz = 20.5670 ppm = 0.188380 Hz/pt number of scans: 20 freq. of 0 ppm: 300.130005 MHz processed size: 32768 complex points LB: 0.000 GF: 0.0000

Fig S57. ¹³C (CD₃OD, 75 MHz, APT) NMR spectrum of **6**.

time domain size: 32768 points

number of scans: 4161

width: 17985.61 Hz = 238.2980 ppm = 0.548877 Hz/pt

Fig S58. ¹H (DMSO- d_6 , 600 MHz) NMR spectrum of **2H**.

file: K:\NMR (AntiVir)\Compound 6\1H\fid expt: <zg30> transmitter freq.: 600.135401 MHz time domain size: 32768 points width: 12019.23 Hz = 20.0275 ppm = 0.366798 Hz/pt number of scans: 53

freq. of 0 ppm: 600.129999 MHz processed size: 32768 complex points LB: 0.000 GF: 0.0000

Fig S59. ¹³C (DMSO- d_6 , 150 MHz, APT) NMR spectrum of **2H**.

S38

Fig S60. ¹H (DMSO- d_6 , 600 MHz) NMR spectrum of **3H**.

file: K:\NMR (AntiVir)\Compound 4\1H\fid expt: <zg30> transmitter freq.: 600.135401 MHz time domain size: 32768 points width: 12019.23 Hz = 20.0275 ppm = 0.366798 Hz/pt number of scans: 29 freq. of 0 ppm: 600.130000 MHz processed size: 32768 complex points LB: 0.000 GF: 0.0000 Fig S61. ¹³C (DMSO-*d*₆, 75 MHz, COM) NMR spectrum of **3H**.

Fig S62. ¹H (DMSO- d_6 , 600 MHz) NMR spectrum of **4H**.

file: K:\NMR (AntiVir)\Compound 5\1H\fid expt: <zg30> transmitter freq.: 600.135401 MHz time domain size: 32768 points width: 12019.23 Hz = 20.0275 ppm = 0.366798 Hz/pt number of scans: 64 freq. of 0 ppm: 600.130000 MHz processed size: 32768 complex points LB: 0.000 GF: 0.0000 Fig S63. ¹³C (DMSO-*d*₆, 75 MHz, COM) NMR spectrum of **4H**.

Fig S64. ¹H (DMSO- d_6 , 600 MHz) NMR spectrum of **5H**.

file: ...NMR (SubstPhth)\Compound 5H\1H\fid expt: <zg3 transmitter freq.: 600.135401 MHz time domain size: 32768 points width: 12019.23 Hz = 20.0275 ppm = 0.366798 Hz/pt number of scans: 37 freq. of 0 ppm: 600.130000 MHz processed size: 32768 complex points LB: 0.000 GF: 0.0000 Fig S65. ¹³C (DMSO-*d*₆, 75 MHz, COM) NMR spectrum of **5H**.

S44

Fig S66. ¹H (DMSO- d_6 , 600 MHz) NMR spectrum of **6H**.

file: K:\NMR (AntiVir)\Compound 3\1H\fid expt: <zg30> transmitter freq.: 600.135401 MHz time domain size: 32768 points width: 12019.23 Hz = 20.0275 ppm = 0.366798 Hz/pt number of scans: 64 freq. of 0 ppm: 600.130000 MHz processed size: 32768 complex points LB: 0.000 GF: 0.0000 Fig S67. ¹³C (DMSO-*d*₆, 75 MHz, COM) NMR spectrum of **6H**.

Fig S68. ¹H (CDCl₃, 600 MHz) NMR spectrum of **3COCH₃**.

file: ...NR (SubstPhth)\Compound 3Ac\1H\fid expt: <zg30> transmitter freq.: 600.135401 MHz time domain size: 32768 points width: 12019.23 Hz = 20.0275 ppm = 0.366798 Hz/pt number of scans: 27 freq. of 0 ppm: 600.130007 MHz processed size: 32768 complex points LB: 0.000 GF: 0.0000

Fig S69. ¹³C (CDCl₃, 150 MHz, COM) NMR spectrum of **3COCH₃**.

time domain size: 65536 points width: 39370.08 Hz = 260.8656 ppm = 0.600740 Hz/pt number of scans: 1216

LB: 1.000 GF: 0.0000

Fig S70. ¹H (CDCl₃, 600 MHz) NMR spectrum of **3OH**.

file: ...NR (SubstPhth)\Compound 3OH\1H\fid expt: <zg30> transmitter freq.: 600.135401 MHz time domain size: 32768 points width: 12019.23 Hz = 20.0275 ppm = 0.366798 Hz/pt number of scans: 15 freq. of 0 ppm: 600.130007 MHz processed size: 32768 complex points LB: 0.000 GF: 0.0000

Fig S71. ¹³C (CDCl₃, 150 MHz, COM) NMR spectrum of **3OH**.

Fig S72. ¹H (CD₃OD, 300 MHz) NMR spectrum of 4COCH₃.

SpinWorks 4: L. Mandic LM-613(FR-23-FR-28)

file: ...NR (SubstPhth)\Compound 4Ac\1H\fid expt: <zg30> transmitter freq.: 300.132701 MHz time domain size: 32768 points width: 6172.84 Hz = 20.5670 ppm = 0.188380 Hz/pt number of scans: 31 freq. of 0 ppm: 300.130005 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Fig S73. ¹³C (CD₃OD, 75 MHz, COM) NMR spectrum of 4COCH₃.

file: ...s\3-(4'-OH)Phth-1-acetyIAd\COM\fid expt: <zgpg30> transmitter freq.: 150.917899 MHz time domain size: 65536 points width: 35971.22 Hz = 238.3496 ppm = 0.548877 Hz/pt number of scans: 4088 freq. of 0 ppm: 150.902594 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000

Fig S74. ¹H (CD₃OD, 600 MHz) NMR spectrum of **4OH**.

file: ...:\NMR (AntiVir)\Compound 10\1H\fid expt: <zg30> transmitter freq.: 600.135401 MHz time domain size: 32768 points width: 12019.23 Hz = 20.0275 ppm = 0.366798 Hz/pt number of scans: 32 freq. of 0 ppm: 600.130007 MHz processed size: 32768 complex points LB: 0.000 GF: 0.0000

Fig S75. ¹³C (CD₃OD, 150 MHz, COM) NMR spectrum of **4OH**.

file: ...tives\3-(4'-OH)PhthAd-1-OH\COM\fid expt: <zgpg30: transmitter freq.: 150.917899 MHz time domain size: 65536 points width: 35971.22 Hz = 238.3496 ppm = 0.548877 Hz/pt number of scans: 1836 freq. of 0 ppm: 150.902600 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000

Fig S76. ¹H (CD₃OD, 300 MHz) NMR spectrum of **400H**.

file: ...R (SubstPhth)\Compound 4OOH\1H\fid expt: <zg30> transmitter freq.: 300.132701 MHz time domain size: 32768 points width: 6172.84 Hz = 20.5670 ppm = 0.188380 Hz/pt number of scans: 23 freq. of 0 ppm: 300.130005 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Fig S77. ¹³C (CD₃OD, 150 MHz, COM) NMR spectrum of **4OOH**.

number of scans: 975

S56

Fig S78. ¹H (CDCl₃, 300 MHz) NMR spectrum of **50H**.

SpinWorks 4: L. Mandic LM-567(SEP.2)-FR8+FR10

file: ...NR (SubstPhth)\Compound 5OH\1H\fid expt: <zg30> transmitter freq.: 300.132701 MHz time domain size: 32768 points width: 6172.84 Hz = 20.5670 ppm = 0.188380 Hz/pt number of scans: 25 freq. of 0 ppm: 300.130006 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Fig S79. ¹³C (CDCl₃, 75 MHz, COM) NMR spectrum of **5OH**.

SpinWorks 4: L. Mandic LM-567(SEP.2)-FR-8-FR10 118,404 124,147 129,178 133,266 136,285 167.157 167.468 151.899 76.737 77.160 77.584 69.404 63.024 30.932 34.697 38.908 43.998 47.859 Ч 1 متدورة البطر فكما وبالمأفا ومراعر ويرقرونها رجرا الانتجاب والبلا والبطر لأمتر لأعط ومركز والروقاة ترجو وبالرطار المت وجعوها الصروالي كالعربا فريج والاور والكريج يرويه PPM 160 120 80 40 file: ...es\3-(4'-nitro)PhthAd-1-OH\COM\fid expt: <zgpg30> freq. of 0 ppm: 75.467737 MHz

file: ...es\3-(4'-nitro)PhthAd-1-OH\COM\fid expt: <zgpg30> transmitter freq.: 75.475295 MHz time domain size: 32768 points width: 17985.61 Hz = 238.2980 ppm = 0.548877 Hz/pt number of scans: 30065 processed size: 32768 complex points LB: 1.000 GF: 0.0000 Fig S80. ¹H (CDCl₃, 300 MHz) NMR spectrum of **500H**.

file: ...R (SubstPhth)\Compound 50OH\1H\fid expt: <zg30> transmitter freq.: 300.132701 MHz time domain size: 32768 points width: 6172.84 Hz = 20.5670 ppm = 0.188380 Hz/pt number of scans: 20 freq. of 0 ppm: 300.130003 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Fig S81. ¹³C (CDCl₃, 75 MHz, COM) NMR spectrum of **500H**.

