Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Materials

Probing the structural evolution, electronic and spectral properties of

beryllium doped magnesium and their ions clusters

Lu Zeng,* Mei-Kun Liang, Xiao-Fan Wei, Jia Guo, Shuai Zhang, Jie Bi, Wei Dai* and Ben-Chao Zhu*

Table of Contents	Pages
Table S1. Electronic State, symmetries, E_b , $\Delta_2 E$, E_{gap} and charges on Be atoms	2–7
in the ground state of $BeMg_n^Q$ (Q = 0, ±1; n = 2 - 12) clusters at PBE0/6-	
311G(d, p) level.	
Table S2. Atoms' coordinate in the most local stable $BeMg_8^-$, $BeMg_9$, $BeMg_9^+$	3–7
clusters.	
Figure S1. Geometries of the lowest total energy state of $BeMg_n^Q$ (Q = 0, ± 1 ;	4–7
n = 2 - 12) clusters at PBE0 /6-311G(d, p) level.	
Figure S2. Size dependence of $BeMg_n^Q$ (Q = 0, ±1; n = 2 – 12) clusters'	5–7
energies at PBE0 / $6-311G(d, p)$ level (a) Average binding energies E_b , (b) the	
second order differences $\Delta_2 E$, (c) α -electron HOMO-LUMO E_{gap} , (d) β -	
electrons HOMO-LUMO E _{gap} .	
Figure S3. VIP and VEA values of the ground state of $BeMg_n$ (n = 2 -12)	5–7
clusters at PBE0/6-311G(d, p) level.	
Figure S4. Total charges on Be atoms in the ground state of $BeMg_n$ (n = 2 -	6–7
12) clusters at PBE0/6-311G(d, p) level.	
Figure S5. Extra perspective ELF analysis of BeMg ₈ ⁻ , BeMg ₉ , BeMg ₉ ⁺	6–7
clusters at B3PW91/6-311 G(d, p) level.	
Figure S6. β electrons TDOS and PDOS of BeMg ₈ ⁻ and BeMg ₉ ⁺ clusters at	7–7
B3PW91/6-311 G(d, p) level.	

	Anionic BeMg _n Q=-1					Neutral BeMg _n Q=0						Cationic BeMg _n ^{Q=+1}								
n	Sym m	State	E _b (eV)	$\Delta_2 E$ (eV)	αEgap (eV)	βEgap (eV)	Charg es on Be (e)	Sym m	State	E _b (eV)	$\Delta_2 E$ (eV)	αEgap (eV)	Charg es on Be (e)	Sym m	State	E _b (eV)	$\Delta_2 E$ (eV)	αEgap (eV)	βEgap (eV)	Charg es on Be (e)
2	$C_{\infty V}$	$^{2}A_{1}$	0.59	_	1.21	2.01	-0.87	C _{2V}	$^{1}A_{1}$	0.25		2.85	-0.30	C _{3V}	${}^{2}A_{1}$	0.60		1.70	3.96	-0.34
3-	C_{3V}	$^{2}A_{1}$	0.88	1.13	1.70	2.81	-0.97	C_{3V}	$^{1}A_{1}$	0.50	0.75	2.86	-0.72	C_{3V}	$^{2}A_{1}$	0.88	0.47	3.29	1.66	-1.26
4	C_{3V}	$^{2}A_{1}$	0.83	-0.01	1.54	2.27	-1.69	C_{3V}	$^{1}A_{1}$	0.50	-0.10	2.12	-1.63	Cs	² A'	0.96	0.56	2.17	2.78	-1.66
5	C_2	$^{2}\mathrm{B}$	0.79	-0.50	1.92	1.84	-1.76	C_{2V}	$^{1}A_{1}$	0.51	-0.28	1.89	-1.97	C_1	^{2}A	0.92	-0.02	1.78	2.73	-1.52
6	C_S	² A'	0.84	0.12	1.24	2.20	-2.14	Cs	$^{1}A'$	0.57	0.18	2.16	-1.77	Cs	² A'	0.89	-0.16	1.75	2.02	-2.43
7	C_1	^{2}A	0.86	-0.51	1.44	2.00	-2.67	Cs	$^{1}A'$	0.58	-0.62	1.89	-2.32	C_1	^{2}A	0.89	-0.16	1.75	2.10	-2.25
8	Cs	² A'	0.93	0.28	2.03	1.73	-1.52	Cs	$^{1}A'$	0.67	-0.36	1.93	-1.54	C_1	^{2}A	0.91	-0.50	1.77	1.88	-2.24
9	C_1	$_{2}A$	0.96	0.35	1.26	2.28	-2.83	Cs	$^{1}A'$	0.77	1.24	2.31	-2.74	Cs	² A'	0.98	0.82	2.26	1.69	-2.07
10	C_2	$^{2}\mathrm{B}$	0.96	0.06	1.15	1.49	-2.99	C_1	^{1}A	0.74	-0.45	1.77	-2.88	C_{2V}	$^{2}\mathrm{B}_{2}$	0.96	-0.21	1.36	2.28	-2.92
11	C_S	² A"	0.95	0.35	1.52	1.34	-3.03	Cs	$^{1}A'$	0.75	0.30	1.70	-2.92	Cs	² A'	0.96	0.10	1.47	2.35	-2.99
12	Cs	² A'	0.91	_	1.39	1.41	-2.61	Cs	$^{1}A'$	0.74		1.77	-1.96	C_1	^{2}A	0.95	_	1.58	1.73	-3.02

Table S1. Electronic State, symmetries, E_b , $\Delta_2 E$, E_{gap} and charges on Be atoms in the ground state of BeMg_nQ (Q = 0, ±1; n = 2 - 12) clusters at

PBE0 /	6-311	.G(d,	p)]	level.
--------	-------	-------	--------------	--------

	B3PW91	/6-311G(d, p)		PBE0/6-311G(d, p)					
BeMg ₈ -	Х	Y	Z	BeMg ₈ -	Х	Y	Z		
Be1	1.35737300	1.12427500	0.00000000	Be1	1.35679300	1.12155000	0.00000000		
Mg2	-0.72941900	1.78056600	1.51289800	Mg2	-0.72750700	1.77061200	1.50978900		
Mg3	1.68745500	0.19155100	-2.38609200	Mg3	1.68319400	0.18726900	-2.37995800		
Mg4	1.68745500	0.19155100	2.38609200	Mg4	1.68319400	0.18726900	2.37995800		
Mg5	-0.72941900	1.78056600	-1.51289800	Mg5	-0.72750700	1.77061200	-1.50978900		
Mg6	-0.72941900	-1.43197300	-1.59647800	Mg6	-0.72750700	-1.42055600	-1.58965600		
Mg7	1.88290400	-1.60917400	0.00000000	Mg7	1.87648600	-1.60563600	0.00000000		
Mg8	-2.79259400	0.15412600	0.00000000	Mg8	-2.78511000	0.15713600	0.00000000		
Mg9	-0.72941900	-1.43197300	1.59647800	Mg9	-0.72750700	-1.42055600	1.58965600		
BeMg ₉	Х	Y	Z	BeMg ₉	Х	Y	Z		
Be1	0.50832000	0.75867000	0.00000000	Be1	-0.50500300	0.75415900	0.00000000		
Mg2	-0.51448000	2.25915300	1.68385100	Mg2	-2.27779200	0.38457900	1.67891700		
Mg3	-0.51448000	2.25915300	-1.68385100	Mg3	-2.27779200	0.38457900	-1.67891700		
Mg4	-0.51448000	-0.76839300	-2.21576400	Mg4	0.51286800	-0.76625800	-2.20814900		
Mg5	-1.65175500	-2.46786600	0.00000000	Mg5	1.64603500	-2.45946400	0.00000000		
Mg6	2.28476200	0.38550100	1.68424100	Mg6	0.51286800	2.25236900	1.67859900		
Mg7	-0.51448000	-0.76839300	2.21576400	Mg7	0.51286800	-0.76625800	2.20814900		
Mg8	-2.3566650	0.46421800	0.00000000	Mg8	-1.32242900	-1.99513900	0.00000000		
Mg9	2.28476200	0.38550100	-1.68424100	Mg9	0.51286800	2.25236900	-1.67859900		
Mg10	1.32737800	-2.00176600	0.00000000	Mg10	2.34883800	0.46183600	0.00000000		
$BeMg_{9}^{+}$	Х	Y	Z	BeMg9 ⁺	Х	Y	Z		
Be1	-1.70552200	-0.51629200	0.00000000	Be1	-1.66997100	-0.49652000	0.00000000		
Mg2	-1.52277500	1.51984100	1.56129100	Mg2	-1.52374700	1.52359900	1.56612900		
Mg3	3.00154100	-0.16766500	0.00000000	Mg3	3.00054200	-0.17001400	0.00000000		
Mg4	1.03890000	0.06564900	2.25980100	Mg4	1.03111600	0.06591600	2.24976100		
Mg5	1.06755600	2.20061100	0.00000000	Mg5	1.06140400	2.17702700	0.00000000		
Mg6	1.03890000	0.06564900	-2.25980100	Mg6	1.03111600	0.06591600	-2.24976100		
Mg7	-1.52277500	-1.53204400	-2.28719400	Mg7	-1.52374700	-1.52968200	-2.27227800		
Mg8	-1.52277500	1.51984100	-1.56129100	Mg8	-1.52374700	1.52359900	-1.56612900		
Mg9	0.51270900	-1.96774000	0.00000000	Mg9	0.52746900	-1.96117300	0.00000000		
Mg10	-1.52277500	-1.53204400	2.28719400	Mg10	-1.52374700	-1.52968200	2.27227800		

Table S2. Atoms' coordinate in the most stable $BeMg_8^-$, $BeMg_9$, $BeMg_9^+$ clusters.

Figure S1. Geometries of the lowest total energy state of $BeMg_n^Q$ (Q = 0, ±1; n = 2 – 12) clusters at PBE0 /6-311G(d, p) level.

Figure S2. Size dependence of BeMg_n^Q (Q = 0, ±1; n = 2 – 12) clusters' energies at PBE0 / 6-311G (d, p) level (a) Average binding energies E_b , (b) the second order differences $\Delta_2 E$, (c) α electrons HOMO-LUMO E_{gap} , (d) β electrons HOMO-LUMO E_{gap} .

Figure S3. VIP and VEA values of the ground state of $BeMg_n$ (n = 2 -12) clusters at PBE0 / 6-311G(d,p) level.

Figure S4. Total charges on Be atoms in the ground state of $BeMg_n^Q$ (Q=0, ±1; n = 2 -12) clusters at PBE0 / 6-311G(d,p) level.

(c-1) BeMg₉⁺label (c-2) Mg2-Mg3-Mg7 view

Figure S5. Extra perspective ELF analysis of BeMg₈⁻, BeMg₉, BeMg₉⁺ clusters at B3PW91/6-311 G(d, p) level.

Figure S6. β electrons TDOS and PDOS of BeMg₈⁻ and BeMg₉⁺ clusters at B3PW91/6-311 G(d, p) level.